OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 640–648

Photonic band-edge micro lasers with quantum dot gain

Masahiro Nomura, Satoshi Iwamoto, Aniwat Tandaechanurat, Yasutomo Ota, Naoto Kumagai, and Yasuhiko Arakawa  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 640-648 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optically pumped continuous-wave photonic band-edge microlasers on a two-dimensional photonic crystal slab. Lasing was observed at a photonic band-edge, where the group velocity was significantly small near the K point of the band structure having a triangular lattice. Lasing was achieved by using a quantum dot gain material, which resulted in a significant decrease in the laser threshold, compared with photonic band-edge lasers using quantum well gain material. Extremely low laser thresholds of ~80 nW at 6 K was achieved. Lasing was observed in a defect-free photonic crystal as small as ~7 μm square.

© 2009 Optical Society of America

OCIS Codes
(050.5298) Diffraction and gratings : Photonic crystals
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Photonic Crystals

Original Manuscript: November 12, 2008
Revised Manuscript: December 21, 2008
Manuscript Accepted: January 3, 2009
Published: January 7, 2009

Masahiro Nomura, Satoshi Iwamoto, Aniwat Tandaechanurat, Yasutomo Ota, Naoto Kumagai, and Yasuhiko Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999). [CrossRef] [PubMed]
  2. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002). [CrossRef]
  3. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  4. S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-127404-4 (2006). [CrossRef] [PubMed]
  5. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14,6308-6315 (2006). [CrossRef] [PubMed]
  6. M. Meier, A. Mekis, A. Dodabalapr, A. Timko, R. E. Slusher, J. D. Joannopoulos, and L. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  7. K. Inoue, M. Sasada, J. Kawata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38L157-L159 (1999). [CrossRef]
  8. M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 87,1325-1327 (2001). [CrossRef]
  9. M. Imada, S. Noda, A. Chutianan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 74, 316-318 (1999). [CrossRef]
  10. S. Noda, M. Yokoyama, M. Imada, A. Chutianan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  11. C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002). [CrossRef]
  12. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004). [CrossRef] [PubMed]
  13. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express,  14, 9269-9276 (2006). [CrossRef]
  14. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K.-H. Lee, R. Bravive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, "Continuous-wave operation of photonic band-edge laser near 1.55 μm on silicon wafer," Opt. Express 15, 7551-7556 (2007). [CrossRef] [PubMed]
  15. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002). [CrossRef]
  16. S.-H. Kwon, S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004). [CrossRef] [PubMed]
  17. N. Kumagai, K. Watanabe, M. Nomura, Y. Ota, and Y. Arakawa, "InAs quantum dots by high growth-temperature and high growth-rate for single-dot optical study," 8th International Conference on Physics of Light-Matter Coupling in Nanostructures, WeP-19, p. 74, Tokyo (2008).
  18. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B,  75, 195313 (2007). [CrossRef]
  19. G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett.,  60, 304-306 (1992). [CrossRef]
  20. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, "Achievement of ultra-low threshold excitation power (8 nW) in a nearly-single quantum dot nanocavity laser," Conference on lasers and Electro-Optics, p. 103, San Jose, USA, May 4-9, 2008.
  21. M. Grundmann and D. Bimberg, "Gain and threshold of quantum dot lasers: Theory and comparison to experiments," Jpn. J. Appl. Phys. 36, 4181-4187 (1997). [CrossRef]
  22. Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited