OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 676–687

Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides

Minsu Kang, Junghyun Park, Il-Min Lee, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 676-687 (2009)
http://dx.doi.org/10.1364/OE.17.000676


View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(200.4650) Optics in computing : Optical interconnects
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: November 18, 2008
Revised Manuscript: January 3, 2009
Manuscript Accepted: January 5, 2009
Published: January 7, 2009

Citation
Minsu Kang, Junghyun Park, Il-Min Lee, and Byoungho Lee, "Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides," Opt. Express 17, 676-687 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-676


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. H. E. Weste and D. Harris, CMOS VLSI Design: a Circuits and Systems Perspective, 3rd ed. (Addison-Wesley, Boston, 2004), pp. 196-218.
  2. A. Shacham, K. Bergman, and L. P. Carloni, "On the design of a photonic network-on-chip," in Proceedings of the First International Symposium on Network-on-Chip (NOCS’07) (IEEE Computer Society Press, 2007), pp. 53-64. [CrossRef]
  3. I. O’Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. D. Wilde, J. van Campenhout, D. van Thourhout, J. van Campenhout, and D. Stroobandt, "Systematic simulation-based predictive synthesis of integrated optical interconnect," IEEE Trans. VLSI Systems 15, 927-940 (2007). [CrossRef]
  4. Y. Vlasov, W. M. J. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical network," Nature Photonics 2, 242-246 (2008). [CrossRef]
  5. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nature Photonics 1, 641-648 (2007). [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  7. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10502 (2000). [CrossRef]
  8. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001). [CrossRef]
  9. H. Kim, J. Hahn, and B. Lee, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008). [CrossRef] [PubMed]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics 2, 496-500 (2008). [CrossRef]
  11. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004). [CrossRef] [PubMed]
  12. G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211-1221 (2007). [CrossRef] [PubMed]
  13. Z. Sun and D. Zeng, "Coupling of surface plasmon waves in metal/dielectric gap waveguides and single-interface waveguides," J. Opt. Soc. Am. B 24, 2883-2887 (2007). [CrossRef]
  14. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leiner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface plasmon polaritons," Opt. Express 16, 10455-10464 (2008). [CrossRef] [PubMed]
  15. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981). [CrossRef]
  16. M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).
  17. P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997). [CrossRef]
  18. H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007). [CrossRef]
  19. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972) [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, Hoboken, NJ, 2007), pp. 289-324.
  21. E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron. 22, 988-993 (1986). [CrossRef]
  22. E. A. J. Marcatili, L.L. Buhl, and R. C. Alferness, "Experimental verification of the improved coupled-mode equations," Appl. Phys. Lett. 49, 1692-1693 (1986). [CrossRef]
  23. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, "Plasmon-polariton nano-strip resonators: from visible to infra-red," Opt. Express 16, 6867-6876 (2008). [CrossRef] [PubMed]
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Interscience, Hoboken, NJ, 2007), pp. 1-37.
  25. S. Sidorenko and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007). [CrossRef] [PubMed]
  26. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). [CrossRef] [PubMed]
  27. P. Nordlander and F. Le, "Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system," Appl. Phys. B 84, 35-41 (2006). [CrossRef]
  28. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3688 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited