OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 703–715

Decision-aided maximum likelihood detection in coherent optical phase-shift-keying system

S. Zhang, P. Y. Kam, J. Chen, and C. Yu  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 703-715 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel decision-aided maximum likelihood (DA ML) technique is proposed to estimate the carrier phase in coherent optical phase-shift-keying system. The DA ML scheme is a totally linear computational algorithm which is feasible for on-line processing in the real systems. The simulation results show that the DA ML receiver can outperform the conventional Mth power scheme, especially when the nonlinear phase noise is dominant.

© 2009 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 6, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: December 21, 2008
Published: January 8, 2009

S. Zhang, P. Y. Kam, J. Chen, and C. Yu, "Decision-aided maximum likelihood detection in coherent optical phase-shift-keying system," Opt. Express 17, 703-715 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005). [CrossRef]
  2. E. Ip and J. M. Kahn, "Feedforward Carrier Recovery for Coherent Optical Communications," J. Lightwave Technol. 25, 2675-2692 (2007). [CrossRef]
  3. M. Nazarathy, X. Liu, L. Christen, Y. K. Lize, and A. Willner, "Self-coherent multisymbol detection of optical differential phase-shift-keying," J. Lightwave Technol. 26, 1921-1934 (2008). [CrossRef]
  4. R. No’e, "PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing," IEEE Photon. Technol. Lett. 17, 887-889 (2005). [CrossRef]
  5. L. G. Kazovsky, G. Kalogerakis, and W.-T. Shaw, "Homodyne phase-shift-keying systems: past challenges and future opportunities," J. Lightwave. Technol. 24, 4876-4884 (2006). [CrossRef]
  6. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation," J. Lightwave Technol. 24, 12-21 (2006). [CrossRef]
  7. J. P. Gordon and L. F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15, 1351-1353 (1990). [CrossRef] [PubMed]
  8. H. Kim and A. H. Gnauck, "Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise," IEEE Photon. Technol. Lett. 15, 320-322 (2003). [CrossRef]
  9. S. Zhang, P. Y. Kam, J. Chen, and C. Yu, "Receiver sensitivity improvement using decision-aided maximum likelihood phase estimation in coherent optical DQPSK system," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThJJ2. [PubMed]
  10. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, New York, 2002). [CrossRef]
  11. K. Kikuchi and S. Tsukamoto, "Evaluation of sensitivity of the digital coherent receiver," J. Lightwave Technol. 26, 1817-1822 (2008). [CrossRef]
  12. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, New York, 2005).
  13. P. Y. Kam, "Maximum-likelihood carrier phase recovery for linear suppressed-carrier digital data modulations," IEEE Trans. Commun. COM-34, 522-527 (1986).
  14. S. Zhang, P. Y. Kam, J. Chen, and C. Yu, "Adaptive decision-aided maximum likelihood phase estimation in coherent optical DQPSK system," in Proceedings of Opto-Electronics and Communications Conference (2008), paper TuA-4.
  15. X. Wei, X. Liu, and C. Xu, "Numerical simulation of the SPM penalty in a 10-Gb/s RZ-DPSK system," IEEE Photon. Technol. Lett. 15, 1636-1638 (2003). [CrossRef]
  16. K.-P. Ho and J. M. Kahn, "Electronic compensation technique to mitigate nonlinear phase noise," J. Lightwave. Technol. 22, 779-783 (2004). [CrossRef]
  17. E. Ip and J. M. Kahn, "Digital equalization of chromatic dispersion and polarization mode dispersion," J. Lightwave Technol. 25, 2033-2043 (2007). [CrossRef]
  18. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, "Improving transmission performance in differential phase shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1351-1353 (2002). [CrossRef]
  19. K. Kikuchi, "Electronic post-compensation for nonlinear phase fluctuations in a 1000-km 20-Gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver," Opt. Express  16, 889-896 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited