OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 723–732

An iterative model of diffuse illumination from bidirectional photometric data

Chung-Hao Tien and Chien-Hsiang Hung  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 723-732 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a methodology for including the photometric raw data sets into the diffuse illumination design process. The method is based on computing the luminance distribution on the outgoing side of diffusing elements from measured bidirectional scattering distribution functions (BSDFs). The model is limited to specimens that create rotationally symmetric scattering distribution. The calculation procedure includes the linear superposition and the correcting feedback. As an application example, the method is verified by a commercially available diffusing sheet illuminated by a 32-inch backlighting module. Close agreement (correlation coefficient = 98.6%) with the experimental measurement confirmed the validity of the proposed procedure.

© 2009 Optical Society of America

OCIS Codes
(120.5240) Instrumentation, measurement, and metrology : Photometry
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.1990) Scattering : Diffusion
(290.1483) Scattering : BSDF, BRDF, and BTDF

ToC Category:
Illumination and nonimaging optics

Original Manuscript: October 30, 2008
Revised Manuscript: December 31, 2008
Manuscript Accepted: January 6, 2009
Published: January 8, 2009

Chung-Hao Tien and Chien-Hsiang Hung, "An iterative model of diffuse illumination from bidirectional photometric data," Opt. Express 17, 723-732 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Stover, Optical Scattering: Measurement and Analysis (Mc Graw-Hill, New York, 1990).
  2. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  3. L. Tsang, J. A. Kong, and K. -H. Ding, Scattering of Electromagnetic Waves, Theories and Applications (Wiley, New York, 2000). [CrossRef]
  4. L. Tsang and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topiics s (Wiley, New York, 2001).
  5. A. K. Fung, Microwave Scattering and Emission Models and Their Applications (Artech House, Boston, 1994).
  6. A. Voronovich, "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Waves Random Media 4, 337-367 (1994). [CrossRef]
  7. A. Voronovich, Wave Scattering from Rough Surfaces, 2nd Edition (Springer-Verlag, Berlin Heidelberg, 1994).
  8. K. E. Torrance and E. M. Sparrow, "Theory for off-specular reflection from roughened surface," J. Opt. Soc. Am. 57, 1105-1114 (1967). [CrossRef]
  9. B. van Ginneken, M. Staveridi and J. J. Koendrik, "Diffuse and specular reflectance from rough surface," Appl. Opt. 37, 130-139 (1998). [CrossRef]
  10. K. Tang and R. O. Buckius, "A statistical model of wave scattering from random rough surfaces," Int. J. Heat Mass Transfer 44, 4059-4073 (2001). [CrossRef]
  11. L. Tsang, J. A. Kong, K, -H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations (Wiley, New York, 2000). [CrossRef]
  12. F. D. Hastings, J. B. Schneider, and S. L. Broschat, "A Monte Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propag. 43, 1183-1191 (1995).
  13. N. Garcia and E. Stoll, "Monte Carlo calculation for electromagnetic-wave scattering from random rough Surfaces," Phys. Rev. Lett. 52, 1798-1801 (1984). [CrossRef]
  14. K. Tang, R. Dimenna, and R. Buckius, "Regions of validity of the geometric optics approximation for angular scattering from very rough surface," Int. Heat J. Mass Transfer 40, 49-59 (1997). [CrossRef]
  15. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, Volume II (McGraw-Hill, New York, 1991).
  16. E. Kreyszig, Introductory Mathematical Statistics (Wiley, New York, 1970)
  17. J. de Boer, "Modelling indoor illumination by complex fenestration systems based on bidirectional : Basics, Measurement, and Rating," J. Soc. Info. Dis. 14/11, 1003-1017 (2006).
  18. M. E. Becker, "Evaluation and characterization of display reflectance," Displays 19, 35-54 (1998). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 2004)
  20. K. Iizuka, Elements of Photonics I (Willey, New York, 2002)
  21. A. M. Nuijs and J. J. L. Horikx, "Diffraction and scattering at antiglare structures for display devices," Appl. Opt. 33, 4058-4068 (1994). [CrossRef] [PubMed]
  22. J. E. Harvey and C. L. Vernold, "Transfer function characterization of scattering surface," Proc. SPIE 3141, 113-127 (1997). [CrossRef]
  23. M. W. Hodapp, Applications for High-Brightness Light-Emitting Diodes, in Semiconductors and Semimetals Vol. 48, G. B. Stringfellow and M. G. Craford ed., (Academic Press, San Diego, 1997) Semiconductors and Semimetals Vol. 48, Chap. 6, p. 227.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited