OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 733–746

Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images

Prabakar Puvanathasan and Kostadinka Bizheva  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 733-746 (2009)
http://dx.doi.org/10.1364/OE.17.000733


View Full Text Article

Enhanced HTML    Acrobat PDF (1844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel, speckle noise reduction algorithm based on the combination of Anisotropic Diffusion (AD) filtering and Interval Type-II fuzzy sets was developed for reducing speckle noise in Optical Coherence Tomography (OCT) images. Unlike regular AD, the new Type-II fuzzy AD algorithm considers the uncertainty in the calculated diffusion coefficient and appropriate adjustments to the coefficient are made. The new algorithm offers flexibility in optimizing the trade-off between two of the image metrics: signal-to-noise (SNR) and Edginess, which are directly related to the structure of the imaged object. Application of the Type-II fuzzy AD algorithm to OCT tomograms acquired in-vivo from a human finger tip and human retina show reduction in the speckle noise with very little edge blurring and about 13 dB and 7 dB image SNR improvement respectively. Comparison with Wiener, Adaptive Lee and regular AD filters, applied to the same images, demonstrates the superior performance of the Type-II fuzzy AD algorithm in terms image SNR and edge preservation metrics improvement.

© 2009 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

History
Original Manuscript: October 29, 2008
Revised Manuscript: December 23, 2008
Manuscript Accepted: January 6, 2009
Published: January 8, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Prabakar Puvanathasan and Kostadinka Bizheva, "Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images," Opt. Express 17, 733-746 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Bio. Opt. 9, 47-74 (2004). [CrossRef]
  2. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Bio. Opt. 4, 95-105 (1999). [CrossRef]
  3. J. Rogowska and M. E. Brezinski, "Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000). [CrossRef]
  4. D. C. Adler, T. H. Ko, and J. G. Fujimoto, "Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter," Opt. Lett. 29, 2878-80 (2004). [CrossRef]
  5. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, "Optical coherence tomography speckle reduction by a partially spatially coherent source," J. Biomed. Opt. 10, 64034 -9 (2005). [CrossRef]
  6. M. Pircher, E. Götzinger, R. Leitgeb, A.F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003). [CrossRef] [PubMed]
  7. T. M. Jorgensen, L. Thrane, M. Mogensen, F. Pedersen and P. E. Andersen, "Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method," in Proc. SPIE 6627, Munich, Germany, 66270P (2007).
  8. N. Iftimia, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography by path length encoded angular compounding," J. Bio. Opt. 8, 260-263 (2003). [CrossRef]
  9. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, "Angle-resolved Optical Coherence Tomography with sequential angular selectivity for speckle reduction," Opt. Express 15, 6200-6209 (2007). [CrossRef] [PubMed]
  10. D. C. Fernandez and H. M. Salinas, "Evaluation of a nonlinear diffusion process for segmentation and quantification of lesions in optical coherence tomography images," Proc. SPIE 5747, 1834-1843 (2005). [CrossRef]
  11. D. C. Fernandez, H. M. Salinas and C. A. Puliafito, "Automated detection of retinal layer structures on optical coherence tomography images," Opt. Express 13, 10200-10216 (2005). [CrossRef]
  12. R. K. Wang, "Reduction of speckle noise for optical coherence tomography by the use of nonlinear anisotropic diffusion," Proc. SPIE 5690, 380-385 (2005). [CrossRef]
  13. H. M. Salinas and D. C. Fernandez, "Comparison of pde-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography," IEEE Trans. Med. Imaging 26, 761-771 (2007). [CrossRef] [PubMed]
  14. S. Aja, C. Alberola, and J. Ruiz, "Fuzzy anisotropic diffusion for speckle filtering," in Proc. IEEE ICASSP 2, 1261-1264 (2001).
  15. P. Puvanathasan and K. Bizheva, "Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set," Opt. Express  15, 15747-15758 (2007). [CrossRef] [PubMed]
  16. J. Koenderink, "The structure of images," Biol. Cybern. 50, 363-370 (1984). [CrossRef] [PubMed]
  17. P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. Pattern Anal. and Mach. Intell. 12, 629-639 (1990). [CrossRef]
  18. Z. Lin and Q. Shi, "An anisotropic diffusion PDE for noise reduction and thin edge preservation," in Proc. 10th Int. Conf. Image Analysis and Processing, 102-107 (1999).
  19. F. Catte, P. L. Lions, J. M. Morel, and T. Coll, "Image selective smoothing and edge detection by nonlinear diffusion," SIAM J. Numer. Anal. 29, 182-193 (1992). [CrossRef]
  20. J. Song and H. R. Tizhoosh, "Fuzzy Anisotropic Diffusion: A Rule-based Approach," in Proc. SCI, 4, 241-246 (2003).
  21. L. A. Zadeh, "Fuzzy sets," Information Control 8, 338-353 (1965). [CrossRef]
  22. S. Aja, C. Alberola, and J. Ruiz, "Fuzzy anisotropic diffusion for speckle filtering," in IEEE Int. Conf. Acoust. Speech Signal Process.  2, 1261-1264 (2001).
  23. G. Sanchez-Ortiz and A. Noble, "Fuzzy clustering driven anisotropic diffusion: Enhancement and segmentation of cardiac MR images," in IEEE Nuclear Symp. and Med. Imag. Conf.  3, 1873-1874 (1998).
  24. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, "Speckle reduction in optical coherence tomography images using digital filtering," J. Opt. Soc. Am. A. 24, 1901-1910 (2007). [CrossRef]
  25. S. Intajag, V. Tipsuwanpon, and F. Cheevasuwit, "Anisotropic diffusion in synthetic aperture radars," in Proc. CCECE 2005, 277-280 (2005).
  26. S. J. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).
  27. Y. H. Lu, S. Y. Tan, T. S. Yeo, W. E. Ng, I. Lim, and C. B. Zhang, "Adaptive filtering algorithms for SAR speckle reduction," in Proc. IGARSS 1, 67-69 (1996)
  28. G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, "Nonlinear anisotropic filtering of mri data," IEEE Trans. Med. Imaging 11, 221-232 (1992). [CrossRef] [PubMed]
  29. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, "High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region," Opt. Lett. 33, 2479-2481 (2008). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited