OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 773–783

Metamaterials for THz polarimetric devices

Xomalin G. Peralta, Evgenya I. Smirnova, Abul K. Azad, Hou-Tong Chen, Antoinette J. Taylor, Igal Brener, and John F. O’Hara  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 773-783 (2009)
http://dx.doi.org/10.1364/OE.17.000773


View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

© 2009 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 18, 2008
Revised Manuscript: December 24, 2008
Manuscript Accepted: December 24, 2008
Published: January 8, 2009

Citation
Xomalin G. Peralta, Evgenya I. Smirnova, Abul K. Azad, Hou-Tong Chen, Antoinette J. Taylor, Igal Brener, and John F. O’Hara, "Metamaterials for THz polarimetric devices," Opt. Express 17, 773-783 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  2. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007). [CrossRef]
  3. B. B. Hu, M. C. Nuss, “Imaging with Terahertz Waves,” Opt. Lett. 20, 1716–1718 (1995). [CrossRef] [PubMed]
  4. S. Hunsche, D. M. Mittleman, M. Koch, M. C. Nuss, “New dimensions in T-ray imaging,” IEEE Trans. Electron. E81c, 269–276 (1998).
  5. B. M. Fischer, H. Helm, P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE 95, 1592–1604 (2007). [CrossRef]
  6. R. H. Jacobsen, D. M. Mittleman, M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011–2013 (1996). [CrossRef] [PubMed]
  7. T. W. Crowe, T. Globus, D. L. Woolard, J. L. Hesler, “Terahertz sources and detectors and their application to biological sensing,” Philos. Trans. R. Soc. London Ser. A 362, 365–374 (2004). [CrossRef]
  8. J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, K. W. Plaxco, “Terahertz circular dichroism spectroscopy: A potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003). [CrossRef] [PubMed]
  9. R. Shimano, H. Nishimura, T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys. Part 2-Lett. And Express Lett. 44, L676–L678 (2005). [CrossRef]
  10. N. Amer, W. C. Hurlbut, B. J. Norton, Y. S. Lee, T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005). [CrossRef]
  11. N. Kanda, K. Konishi, M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15, 11117–11125 (2007). [CrossRef] [PubMed]
  12. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005). [CrossRef]
  13. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate”, Opt. Lett. 31, 1112–1114 (2006). [CrossRef] [PubMed]
  14. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals”, Opt. Lett. 33, 1174–1176 (2008). [CrossRef] [PubMed]
  15. J.-B. Masson, G. Gallot, “Terahertz achromatic quarter-wave plate”, Opt. Lett. 31, 265–267 (2006). [CrossRef] [PubMed]
  16. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (Research Studies Press Ltd, Taunton,1997).
  17. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley Interscience, 2000). [CrossRef]
  18. J. S. Tharp, B. A. Lail, B. A. Munk, G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007). [CrossRef]
  19. C. Winnewisser, F. Lewen, J. Weinzierl, H. Helm, “Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy,” Appl. Opt. 38, 3961–3967 (1999). [CrossRef]
  20. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  21. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]
  22. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  23. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  24. A. Degiron, J. J. Mock, D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15, 1115–1127 (2007). [CrossRef] [PubMed]
  25. E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 173105 (2007). [CrossRef]
  26. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  27. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006). [CrossRef] [PubMed]
  28. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  29. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92, 193104 (2008). [CrossRef]
  30. J. Han, A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” archived in http://arxiv.org/abs/0808.3183 (2008).
  31. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials, “ Nat. Photonics 2, 295 (2008). [CrossRef]
  32. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007). [CrossRef]
  33. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  34. M. S. Boybay, O. M. Ramahi, “Double Negative Metamaterials for Subsurface Detection,” Proceedings of the 29th Annual International Conference of the IEEE EMBS, 3485–3488 (2007).
  35. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2006). [CrossRef]
  36. A. K. Azad, J. M. Dai, W. L. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006). [CrossRef] [PubMed]
  37. X. Xu, B. Quan, C. Gu, L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006). [CrossRef]
  38. N. Wongkasem, A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, W. D. Goodhue, “Development of chiral negative refractive index metamaterials for the terahertz frequency regime,” IEEE Trans. Antennas Propag. 55, 3052–3062 (2007). [CrossRef]
  39. W. Zhang, A. Potts, A. Papakostas, D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials,” Appl. Phys. Lett. 86, 231905 (2005). [CrossRef]
  40. J. D. Baena, L. Jelinek, R. Marques, J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88, 134108 (2006). [CrossRef]
  41. R. Marques, J. Martel, F. Mesa, F. Medina, “A new 2D isotropic left-handed metamaterial design: Theory and experiment,” Microwave Opt. Technol. Lett. 35, 405–408 (2002). [CrossRef]
  42. C. Imhof, R. Zengerle, “Strong birefringence in left-handed metallic metamaterials,” Opt. Commun. 280, 213–216 (2007). [CrossRef]
  43. A. A. Zharov, N. A. Zharova, R. E. Noskov, I. V. Shadrivov, Y. S. Kivshar, “Birefringent left-handed metamaterials and perfect lenses for vectorial fields,” New J. Phys. 7, 2201-9 (2005). [CrossRef]
  44. M. Iwanagaa, “Ultracompact waveplates: Approach from metamaterials,” Appl. Phys. Lett. 92, 153102 (2008). [CrossRef]
  45. W. J. Padilla, D. R. Smith, D. N. Basov, “Spectroscopy of metamaterials from infrared to optical frequencies,” J. Opt. Soc. Am. B 23, 404–414 (2006). [CrossRef]
  46. S. O’Brien, J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter 146383–6394 (2002). [CrossRef]
  47. J. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Enhanced terahertz detection via ErAs : GaAs nanoisland superlattices,” Appl. Phys. Lett. 88, 251119 (2006). [CrossRef]
  48. J. D. Jackson, Classical Electrodynamics (Wiley Academic Press, 1998).
  49. CST Microwave Studio, © 2008 CST—Computer Simulation Technology, Wellesley Hills, MA, USA. www.cst.com.
  50. J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).
  51. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press, 1989). [PubMed]
  52. Melles Griot, Technical Literature on Optics, www.mellesgriot.com/pdf/Waveplate ApNote.pdf
  53. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746–9752 (2008). [CrossRef] [PubMed]
  54. N. C. J. van der Valk, W. A. M. van der Marel, P. C. M. Planken, “Terahertz polarization imaging,” Opt. Letters 30, 2802–2804 (2005). [CrossRef]
  55. A. Agrawal, H. Cao, A. Nahata, “Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission,” New J. Phys. 7, 2491-13 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited