OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 810–818

All-solid-state parametric Raman anti-Stokes laser at 508 nm

R. P. Mildren, D. W. Coutts, and D. J. Spence  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 810-818 (2009)
http://dx.doi.org/10.1364/OE.17.000810


View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a parametric anti-Stokes Raman laser using potassium gadolinium tungstate, generating output chiefly at the first anti-Stokes at 508 nm. The compact 4.5 cm long device is pumped by a Q-switched 532 nm laser and uses an off-axis Stokes resonator to provide non-collinear phase matching between the pump and the generated Stokes and anti-Stokes fields. Anti-Stokes output energies up 0.27 mJ were obtained at a conversion efficiency from the pump of 0.46%. Second- and third-order anti-Stokes lines at 486 nm and 465 nm were also observed.

© 2009 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 24, 2008
Revised Manuscript: November 16, 2008
Manuscript Accepted: November 17, 2008
Published: January 9, 2009

Citation
R. P. Mildren, D. W. Coutts, and D. J. Spence, "All-solid-state parametric Raman anti-Stokes laser at 508 nm," Opt. Express 17, 810-818 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-810


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Piper and H. M. Pask, "Crystalline Raman lasers," IEEE J. Sel. Top. Quantum Electron. 13, 692-704 (2007). [CrossRef]
  2. T. T. Basiev and R. C. Powell, "Solid-state Raman lasers," in Handbook of Laser Technology and Applications, C. E. Webb et al., eds., (Institute of Physics, UK, 2003), pp. 469-497.
  3. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 1-56 (2003). [CrossRef]
  4. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. Quantum Electron. 28, 113-143 (2004). [CrossRef]
  5. R. Chiao and B. P. Stoicheff, "Angular dependence of maser-stimulated Raman radiation in calcite," Phys. Rev. Lett. 12, 290-293 (1964). [CrossRef]
  6. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, J. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206-206 (2001). [CrossRef]
  7. A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, "Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals," Appl. Opt. 21, 4533-4547 (1999). [CrossRef]
  8. A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, "Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity," Phys. Rev. A 1, 628-635 (1970).
  9. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun. 183, 277-287 (2000). [CrossRef]
  10. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, "Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fibre," Opt. Lett. 29, 1545-1547 (2004). [CrossRef] [PubMed]
  11. C. Reiser, T. D. Raymond, R. B. Michie, and A. P. Hickman, "Efficient anti-Stokes Raman conversion in collimated beams," J. Opt. Soc. Am. B 6, 1859-1869 (1989). [CrossRef]
  12. A. Z. Grasyuk, L.L. Losev, A. P. Lutsenko, and S. N. Sazonov, "Raman parametric generation of anti-Stokes radiation under conditions of amplification of an external Stokes signal," Sov. J. Quantum Electron. 20, 529-532-1155 (1990). [CrossRef]
  13. A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, "Picosecond parametric Raman laser based on KGd(WO4)2 crystal," Opt. Commun 240, 239-244 (2004). [CrossRef]
  14. R. B. Andreev, V. A. Gorbunov, S. S. Gulidov, S. B. Papernyl, and V. A. Serebryakov, "Role of parametric effects in generation of higher components of stimulated Raman scattering in gases," Sov. J. Quantum Electron. 12, 35-37-1155 (1982). [CrossRef]
  15. A. Z. Grasyuk, L. L. Losev, A. P. Lutsenko, and S. N. Sazonov, "Parametric Raman anti-Stokes laser," Sov. J. Quantum Electron. 20, 1153-1155-1155 (1990). [CrossRef]
  16. P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, "Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing," J. Opt. Soc. Am. B 21, 357-363 (2004). [CrossRef]
  17. R. W. Boyd, Nonlinear Optics (Academic Press, Inc., San Diego, 1992).
  18. M. C. Pujol, M. Rico, C. Zaldo, R. Sole1, V. Nikolov, X. Solans, M. Aguilo, and F. Dıaz, "Crystalline structure and optical spectroscopy of Er-doped KGd(WO4)2 single crystals," Appl. Phys. B 68, 187-197 (1999). [CrossRef]
  19. I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+- (KGW:Nd)," Opt. Eng. 36,1660-1669 (1997). [CrossRef]
  20. V. V. Ermolenkov, V. A. Lisinetskii, Y. I. Mishkel', A. S. Grabchikov, A. P. Chaikovskii, and V. A. Orlovich, "A radiation source based on a solid-state Raman laser for diagnosing tropospheric ozone," J. Opt. Tech. 72, 32-36 (2005). [CrossRef]
  21. For example: R. Wallenstein, "High power all-solid-state laser source for direct-write large-screen laser projection displays," in Proceeding of the Lasers and Electro-Optics Society 12th Annual Meeting, 158-159 (1999).
  22. Y. Chen, W. Hou, H. Peng, H. Zhang, L. Guo, H. Zhang, D. Cui, and Z.Y. Xu, "Intracavity frequency doubling of an active Q-switched Nd:YAG laser with 2.25 W output power at 473 nm," Opt. Commun. 270, 58-62 (2007). [CrossRef]
  23. S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu, "Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal," Opt. Express 13, 10120-10128 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10120. [CrossRef] [PubMed]
  24. S. N. Karpukhin and A. I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals," Sov. J. Quantum Electron. 16, 1027-1031 (1986). [CrossRef]
  25. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. McKay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-785. [CrossRef] [PubMed]
  26. C. He and T. H. Chyba, "Solid-state barium nitrate Raman laser in the visible region," Opt. Commun. 135, 273-278 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited