OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 819–827

Polarization-independent active metamaterial for high-frequency terahertz modulation

Oliver Paul, Christian Imhof, Bert Lägel, Sandra Wolff, Jan Heinrich, Sven Höfling, Alfred Forchel, Remigius Zengerle, René Beigang, and Marco Rahm  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 819-827 (2009)
http://dx.doi.org/10.1364/OE.17.000819


View Full Text Article

Enhanced HTML    Acrobat PDF (1207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a polarization-independent metamaterial design for the construction of electrically tunable terahertz (THz) devices. The implemented structure consists of an array of gold crosses fabricated on top of an n-doped gallium arsenide (GaAs) layer. Utilizing THz time-domain spectroscopy, we show that the electric resonance and thus the transmission properties of the cross structure can be tuned by an externally applied bias voltage. We further demonstrate the fast amplitude modulation of a propagating THz wave for modulation frequencies up to 100 kHz.

© 2009 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.4110) Optical devices : Modulators
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Metamaterials

History
Original Manuscript: October 29, 2008
Revised Manuscript: December 27, 2008
Manuscript Accepted: December 27, 2008
Published: January 9, 2009

Citation
Oliver Paul, Christian Imhof, Bert Lägel, Sandra Wolff, Jan Heinrich, Sven Höfling, Alfred Forchel, Remigius Zengerle, René Beigang, and Marco Rahm, "Polarization-independent active metamaterial for high-frequency terahertz modulation," Opt. Express 17, 819-827 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-819


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. V. D. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Soviet Physics Uspekhi 10, 509-514 (1968). [CrossRef]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  6. C. Imhof and R. Zengerle, "Pairs of metallic crosses as a left-handed metamaterial with improved polarization properties," Opt. Express 14, 8257-8262 (2006). [CrossRef] [PubMed]
  7. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006). [CrossRef]
  8. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express 16, 6736-6744 (2008). [CrossRef] [PubMed]
  9. C. Imhof and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun. 280, 213-216 (2007). [CrossRef]
  10. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007). [CrossRef]
  11. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  12. Q1. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, andW. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nat. Photonics 2, 295-298 (2008). [CrossRef]
  13. J. Han, A. Lakhtakia, and C.-W. Qiu, "Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability," Opt. Express 16, 14390-14396 (2008). [CrossRef] [PubMed]
  14. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  15. H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, "Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays," Opt. Express 16, 7641-7648 (2008). [CrossRef] [PubMed]
  16. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, "Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves," Appl. Phys. Lett. 93, 091117 (2008).Q2 [CrossRef]
  17. A. N. Lagarkov and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev. B 53, 6318-6336 (1996). [CrossRef]
  18. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallicn Mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  19. A. Mackay, "Proof of polarisation independence and nonexistence of crosspolar terms for targets presenting nfold (n>2) rotational symmetry with special reference to frequency-selective surfaces," Electron. Lett. 25, 1624- 1625 (1989). [CrossRef]
  20. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited