OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 860–871

Empirical model of the photon path length for a single fiber reflectance spectroscopy device

S.C. Kanick, H.J.C.M. Sterenborg, and A. Amelink  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 860-871 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A reflectance spectroscopic device that utilizes a single fiber for both light delivery and collection has advantages over classical multi-fiber probes. This study presents a novel empirical relationship between the single fiber path length and the combined effect of both the absorption coefficient, μa (range: 0.1–6 mm-1), and the reduced scattering coefficient, μ′s (range: 0.3 – 10 mm-1), for different anisotropy values (0.75 and 0.92), and is applicable to probes containing a wide range of fiber diameters (range: 200 – 2000 μm). The results indicate that the model is capable of accurately predicting the single fiber path length over a wide range (r = 0.995; range: 180 – 3940 μm) and predictions do not show bias as a function of either μa or μ′s .

© 2009 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(000.3870) General : Mathematics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: October 30, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: December 31, 2008
Published: January 12, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, "Empirical model of the photon path length for a single fiber reflectance spectroscopy device," Opt. Express 17, 860-871 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. W. Wilson and S. L. Jacques, "Optical reflectance and transmittance of tissues: Principles and applications,". IEEE J. Quantum Electron. 26, 2186-2199 (1990). [CrossRef]
  2. D. T. Delpy and M. Cope, "Quantification in tissue near-infrared spectroscopy," Phil. Trans. R. Soc. Lond. B Biol. Sci. 352, 649-659 (1997). [CrossRef]
  3. I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer therapy," Cancer Biol. Ther. 3, 259-267 (2004). [CrossRef] [PubMed]
  4. J. R. Mourant, T. M. Johnson, G. Los, and I. J. Bigio, "Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements," Phys. Med. Biol. 44, 1397-1417 (1999). [CrossRef] [PubMed]
  5. M. Canpolat and J. R. Mourant, "Monitoring photosensitizer concentration by use of a fiber-optic probe with small source-detector separation," Appl. Opt. 39, 6508-6514 (2000). [CrossRef]
  6. T. P. Moffit and S. A. Prahl, "In-vivo sized-fiber spectroscopy," Proc. SPIE 3917, 225-231, (2000). [CrossRef]
  7. M. Canpolat and J. R. Mourant, "Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light," Appl. Opt. 40, 3792-3799 (2001). [CrossRef]
  8. R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, "Optical biopsy of breast tissue using differential path-length spectroscopy," Phys. Med. Biol. 50, 2573-2581 (2005). [CrossRef] [PubMed]
  9. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: Applications to human brain," Appl. Opt. 384939-4950 (1999). [CrossRef]
  10. D. W. Chicken, K. S. Johnson, M. R. Falzon, A. C. Lee, G. Briggs, D. Pickard, I. J. Bigio, S. G. Bown, and M. R. S. Keshtgar, "Elastic Scattering Spectroscopy for Detection of Sentinel Lymph Node Metastases in Breast Carcinoma," in Diagnostic Optical Spectroscopy in Biomedicine III, A. Mycek, ed., Vol. SPIE Volume 5862 of Progress In Biomedical Optics And Imaging (Optical Society of America, 2005), paper WB2.
  11. A. Amelink, O. P. Kaspers, H. J. C. M. Sterenborg, J. E. van der Wal, J. L. N. Roodenburg, and M. J. H. Witjes, "Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy," Oral Oncol. 44, 65-71 (2008). [CrossRef]
  12. J. C. Finlay and T. H. Foster, "Hemoglobin oxygen saturations in phantoms an in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation," Med. Phys. 31, 1949-1959 (2004). [CrossRef] [PubMed]
  13. R. Reif, M. Wang, S. Joshi, O. A’Amar, and I. J. Bigio, "Optical method for real-time monitoring of drug concentrations facilitates the development of novel methods for drug delivery to brain tissue," J. Biomed. Opt. 12, 034036 (2007). [CrossRef] [PubMed]
  14. A. Amelink and H. J. C. M. Sterenborg, "Measurement of the local optical properties of turbid media by differential path-length spectroscopy," Appl. Opt. 43, 3048-3054 (2004). [CrossRef] [PubMed]
  15. O. P. Kaspers, H. J. C. M. Sterenborg, and A. Amelink, "Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence," Appl. Opt. 47, 365-371 (2008). [CrossRef] [PubMed]
  16. A. Amelink, M. P. L. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, "Single-scattering spectroscopy for endoscopic analysis of particle size in superficial layers of turbid media," Appl. Opt. 42, 4095-4101 (2003). [CrossRef] [PubMed]
  17. H. J. van Staveren, C. J. M. Moes, S. A. Prahl, and M. J. C. Vangemert, "Light-scattering in Intralipid-10-percent in the wavelength region of 400−1100 nm," Appl. Opt. 30, 4507-4514, (1991). [CrossRef] [PubMed]
  18. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, "Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements," J. Biomed. Opt. 13, 05040144 (2008). [CrossRef]
  19. D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," SIAM J. App. Math. 11, 431-444 (1963). [CrossRef]
  20. W. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  21. T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001). [CrossRef] [PubMed]
  22. A. Amelink, A. van der Ploeg-van den Heuvel, W. J. de Wolf, D. J. Robinson, and H. J. C. M. Sterenborg, "Monitoring PDT by means of superficial reflectance spectroscopy," J. Photochem. Photobiol. B. 79, 243-251 (2005). [CrossRef] [PubMed]
  23. B. Kruijt, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, R. W. de Bruin, H. J. Sterenborg, A. Amelink, and D. J. Robinson, "Monitoring ALA-induced PPIX photodynamic therapy in the rat esophagus using fluorescence and reflectance spectroscopy," Photochem. Photobiol. 86, 1515-1527 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited