OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 872–887

Channel coding and time-diversity for optical wireless links

Fang Xu, Ali Khalighi, Patrice Caussé, and Salah Bourennane  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 872-887 (2009)
http://dx.doi.org/10.1364/OE.17.000872


View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Atmospheric turbulence can cause a significant performance degradation in free space optical communication systems. An efficient solution could be to exploit the temporal diversity to improve the performance of the transmission link. Depending on the tolerable delay latency, we can benefit from some degree of time diversity that we can exploit by employing channel coding and interleaving. In this paper, we investigate the efficiency of several channel coding techniques for different time diversity orders and turbulence conditions. We show that a simple convolutional code is a suitable choice in most cases as it makes a good compromise between decoding complexity and performance. We also study the receiver performance when the channel is estimated based on some training symbols.

© 2009 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 29, 2008
Revised Manuscript: December 19, 2008
Manuscript Accepted: December 19, 2008
Published: January 12, 2009

Citation
Fang Xu, Ali Khalighi, Patrice Caussé, and Salah Bourennane, "Channel coding and time-diversity for optical wireless links," Opt. Express 17, 872-887 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. W. S. Chan, "Free-space optical communications," J. Lightwave Technol. 24, 4750-4762 (2006). [CrossRef]
  2. D. J. T. Heatley, D. R. Wisely, I. Neild, and P. Cochrane, "Optical wireless: The story so far," IEEE Commun. Mag. 72, 72-82 (1998). [CrossRef]
  3. H. A. Willebrand and B. S. Ghuman, "Fiber optics without fiber," IEEE Spectrum 40, 41-45 (2001).
  4. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, "Understanding the performance of free-space optics," J. Opt. Net. 2, 178-200 (2003).
  5. D. Kedar and S. Arnon, "Urban optical wireless communication networks: the main challenges and possible solutions," IEEE Commun. Mag. 42, 2-7 (2004). [CrossRef]
  6. S. Arnon, "Effects of atmospheric turbulence and building sway on optical wireless communication systems," Opt. Lett. 28, 129-131 (2003). [CrossRef] [PubMed]
  7. A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, "Alignment and tracking of a free-space optical communications link to a UAV," Proc. Digital Avionics Syst. Conf. (DASC) 1.C, 2.1-2.9 (2005).
  8. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (Dover Publications Inc., 1968). New York.
  9. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, Bellingham, Washington, 2005), 2nd ed. [CrossRef]
  10. J. G. Proakis, Digital Communications (McGraw-Hill, 5th edition, 2008).
  11. F. S. Vetelino, C. Young, L. C. Andrews, and J. Recolons, "Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence," Appl. Opt. 46, 2099-2108 (2007). [CrossRef] [PubMed]
  12. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, "Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum," Waves Random Media 10, 5370 (2000). [CrossRef]
  13. E. J. Lee and V. W. S. Chan, "Part 1: Optical communication over the clear turbulent atmospheric channel using diversity," IEEE J. Sel. Areas Commun. 22, 1896-1906 (2004). [CrossRef]
  14. S. G. Wilson, M. Brandt-Pearce, Q. L. Cao, and M. Baedke, "Optical repetition MIMO transmission with multipulse PPM," IEEE J. Sel. Areas Commun. 23, 1901- 1910 (2005). [CrossRef]
  15. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, "Free-space optical MIMO transmission with Q-ary PPM," IEEE Trans. Commun. 53, 1402-1412 (2005). [CrossRef]
  16. J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, "Shannon capacities and error-correction codes for optical atmospheric turbulent channels," J. Opt. Net. 4, 586-601 (2005). [CrossRef]
  17. J. W. Goodman, Statistical Optics (John Wiley & Sons, 1985). New York.
  18. L. C. Andrews and R. L. Phillips, "I-K distribution as a universal propagation model of laser beams in atmospheric turbulence," J. Opt. Soc. Am. 2, 160-163 (1985). [CrossRef]
  19. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, "Theory of optical scintillation," J. Opt. Soc. Am. 16, 1417-1429 (1999). [CrossRef]
  20. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562 (2001). [CrossRef]
  21. R. M. Gagliardi and S. Karp, Optical Communications (John Wiley & Sons, 1995), 2nd ed.
  22. X. Zhu and J. Kahn, "Free-space optical communication through atomospheric turbulence channels," IEEE Trans. Commun. 50, 1293-1330 (2002). [CrossRef]
  23. M. Cole and K. Kiasaleh, "Signal intensity estimators for free-space optical communications through turbulent atmosphere," IEEE Photon. Technol. Lett. 16, 2395-2397 (2004). [CrossRef]
  24. X. Zhu and J. M. Kahn, "Pilot-symbol assisted modulation for correlated turbulent free-space optical channels," Proc. Soc. Photo-Opt. Instrum. Eng. 4489, 138-145 (2002).
  25. J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and convolutional codes," IEEE Trans. Inf. Theory 42, 429-445 (1996). [CrossRef]
  26. Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television (ETSI EN 300 744 V1.5.1, European Standard (Telecommunications series), 2004).
  27. C. Berrou and A. Glavieux, "Near optimum error correcting coding and decoding: turbo-codes," IEEE Trans. Commun. 44, 1261-1271 (1996). [CrossRef]
  28. F. Xu, M. A. Khalighi, P. Caussé, and S. Bourennane, "Performance of coded time-diversity free-space optical links," Proc. Queen’s 24th Biennial Symp. Commun. (QSBC) pp. 146-149 (2008). Kingston, Canada.
  29. F. Babich and F. Vatta, "On rate-compatible punctured turbo codes design," EURASIP J. Appl. Signal Process. 6, 784-794 (2005).
  30. A. S. Barbulescu and S. S. Pietrobon, "Interleaver design for turbo codes," Elect. Lett. 30, 2107-2108 (1994). [CrossRef]
  31. N. Cvijetic, S. G. Wilson, and R. Zarubica, "Performance evaluation of a novel converged architecture for digitalvideo transmission over optical wireless channels," J. Lightwave Technol. 25, 3366-3373 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited