OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 894–905

A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy

Rajesh N. Raman, Christopher D. Pivetti, Dennis L. Matthews, Christoph Troppmann, and Stavros G. Demos  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 894-905 (2009)
http://dx.doi.org/10.1364/OE.17.000894


View Full Text Article

Enhanced HTML    Acrobat PDF (2243 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The potential of NADH autofluorescence as an in vivo intrinsic optical signature to monitor tissue metabolism is well recognized and supported by experimental results mainly in animal models. In this work, we propose a non-contact implementation of this method using large area excitation and employing a normalization method to account for non-metabolic signal changes. Proof of principle in vivo experiments were carried out using an autofluorescence imaging experimental system and a rat renal ischemia model. A hand-held fiber-optic probe was utilized to test the ability of the signal normalization method to address operational conditions associated with the translation of this method to a clinical setting. Preliminary pre-clinical in vivo test of the probe system was carried out using the same rat model.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 20, 2008
Revised Manuscript: January 6, 2009
Manuscript Accepted: January 7, 2009
Published: January 12, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Rajesh N. Raman, Christopher D. Pivetti, Dennis L. Matthews, Christoph Troppmann, and Stavros G. Demos, "A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy," Opt. Express 17, 894-905 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962). [CrossRef] [PubMed]
  2. A. Mayevsky and B. Chance, "Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer," Science 217, 537-540 (1982). [CrossRef] [PubMed]
  3. J. M. C. C. Coremans, M. Van Aken, D. C. W. H Naus, M. F. Van Velthuysen, H. A. Bruining, and G. J. Puppels, "Pretransplantation assessment of renal viability with NADH fluorimetry," Kidney Int. 57, 671-683 (2000). [CrossRef] [PubMed]
  4. R. Reif, M. S. Arnorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, "Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures," J. Biomed. Opt. 13, 07424LR (2008). [CrossRef]
  5. Valery Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2000).
  6. R. N. Raman, C. D. Pivetti, D. L. Matthews, C. Troppmann, and S. G. Demos, "Quantification of in vivo autofluorescence dynamics during renal ischemia and reperfusion under 355 nm excitation," Opt. Express 16, 4930-4944 (2008). [CrossRef] [PubMed]
  7. A. Hansch, D. Sauner, I. Hilger, J. Bottcher, A. Malich, O. Frey, R. Brauer, and W. A. Kaiser, "Autofluorescence spectroscopy in whole organs with a mobile detector system,"Acad. Radiol. 11, 1229-1236 (2004). [CrossRef] [PubMed]
  8. R. F. Pitts, Physiology of the Kidney and Body Fluids: An Introductory Text, 3rd ed. (Year Book Medical Publishers, 1974).
  9. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples," J. Biol. Chem. 254, 4764-4771 (1979). [PubMed]
  10. J. T. Fitzgerald, A. P. Michalopoulou, C. D. Pivetti, R. N. Raman, C. Troppmann, and S. G. Demos, "Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging," J. Biomed. Opt. 10,044018 (2005). [CrossRef]
  11. A. Weber and J. S. Schulz, "Fiber-optic fluorimetry in biosensors: comparison between evanescent wave generation and distal-face generation of fluorescent light," Biosens. Bioelectron. 7, 193-197 (1992). [CrossRef]
  12. K. C. Calman, R. O. Quinn, and P. R. Bell, "Metabolic aspects of organ storage and the prediction of viability," in Organ Preservation, D. E. Pegg, ed. (Churchill Press, 1973), pp. 225-240.
  13. P. Jablonski, B. O. Howden, D. A. Rae, C. S. Birrell, V. C. Marshall, and J. Tange, "An experimental model for assessment of renal recovery from warm ischemia," Tranplantation 35, 198-204 (1983). [CrossRef]
  14. American National Standards Institute. Z136.1 American National Standards Institute (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited