OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 912–923

Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy

Takeshi Yasui, Yu Takahashi, Shuichiro Fukushima, Yuki Ogura, Toyonobu Yamashita, Tomohiro Kuwahara, Tetsuji Hirao, and Tsutomu Araki  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 912-923 (2009)
http://dx.doi.org/10.1364/OE.17.000912


View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical probe methods for in vivo assessments of cutaneous photoaging are necessary in fields such as anti-aging dermatology and skin cosmetic development. We investigated the relation between wrinkle direction and collagen orientation in ultraviolet-B-exposed (UVB-exposed) skin using polarization-resolved second-harmonic-generation (SHG) microscopy. A polarization anisotropic image of the SHG light indicated that wrinkle direction in UVB-exposed skin is predominantly parallel to the orientation of dermal collagen fibers. Furthermore, collagen orientation in post-UVB-exposed skin with few wrinkles changed from that of UVB-exposed wrinkled skin to that of no-UVB-exposed skin. The method proposed has the potential to become a powerful non-invasive tool for assessment of cutaneous photoaging.

© 2009 Optical Society of America

OCIS Codes
(170.1870) Medical optics and biotechnology : Dermatology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(190.4160) Nonlinear optics : Multiharmonic generation
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 1, 2008
Revised Manuscript: December 29, 2008
Manuscript Accepted: January 9, 2009
Published: January 12, 2009

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Takeshi Yasui, Yu Takahashi, Shuichiro Fukushima, Yuki Ogura, Toyonobu Yamashita, Tomohiro Kuwahara, Tetsuji Hirao, and Tsutomu Araki, "Observation of dermal collagen fiber in wrinkled skin using polarization-resolved secondharmonic-generation microscopy," Opt. Express 17, 912-923 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Gilchrest, "Skin aging and photoaging: An overview," J. Am. Acad. Dermtol. 21, 610-613 (1989). [CrossRef]
  2. L. H. Kligman, E. Schwartz, A. N. Sapadin, and A. M. Kligman, "Collagen loss in photoaged human skin is overestimated by histochemistry," Photodermatol. Photoimmunol. Photomed. 16, 224-228 (2000). [CrossRef] [PubMed]
  3. J. M. Schmitt, M. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatol. 191, 93-98 (1995). [CrossRef]
  4. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest Dermatol. 104, 946-952 (1995). [CrossRef] [PubMed]
  5. B. Masters and P. So, "Confocal microscopy and multi-photon excitation microscopy of human skin in vivo," Opt. Express 8, 2-10 (2001). [CrossRef] [PubMed]
  6. K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003). [CrossRef] [PubMed]
  7. J. A. Palero, H. S. de Bruijn, A. van der P.-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, "In vivo nonlinear spectral imaging in mouse skin," Opt. Express 14, 4395-4402 (2006). [CrossRef] [PubMed]
  8. S.-J. Lin, R.-Jr Wu, H.-Y. Tan, W. Lo, W.-C. Lin, T.-H. Young, C.-J. Hsu, J.-S. Chen, S.-H. Jee, and C.-Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 30, 2275-2277 (2005). [CrossRef] [PubMed]
  9. M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, "In vivo assessment of human skin aging by multiphoton laser scanning tomography," Opt. Lett. 31, 2879-2881 (2006). [CrossRef] [PubMed]
  10. T. Yasui, Y. Tohno, and T. Araki, "Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry," J. Biomed. Opt. 9, 259-264 (2004). [CrossRef] [PubMed]
  11. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, "Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light," Opt. Quantum Electron. 37, 1397-1408 (2005). [CrossRef]
  12. T. Yasui, Y. Tohno, and T. Araki, "Determination of collagen fiber orientation in human tissue by polarization measurement of molecular second-harmonic-generation light," Appl. Opt. 43, 2861-2867 (2004). [CrossRef] [PubMed]
  13. P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon," J. Biomed. Opt. 7, 205-214 (2002). [CrossRef] [PubMed]
  14. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and J. J. Halbhuber, "Femtosecond near infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001). [CrossRef] [PubMed]
  15. K. KönigK, P. T. C. So, W. W. Mantulin, and E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two photon microscope," Opt. Lett. 22, 135-136 (1997). [CrossRef]
  16. P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, "Highly efficient upconverters for multiphoton fluorescence microscopy," J. Microsc. 189, 199-212 (1998). [CrossRef]
  17. R. R. Anderson and J. A. Parish, "The optics of human skin, " J. Invest. Dermatol. 77, 13-19 (1981). [CrossRef] [PubMed]
  18. S. L. Jacques, "Origins of tissue optical properties in the UVA, Visible, and NIR regions," in OSA TOPS on Advances in Optical Imaging and Photon Migration, Vol. 2 (Optical Society of America, 1996), pp. 364-369, http://omlc.ogi.edu/news/jan98/skinoptics.html.
  19. I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002). [CrossRef]
  20. T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:Forsterite and Ti:Sapphire lasers," Appl. Opt. (to be published). [PubMed]
  21. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093-3099 (2003). [CrossRef] [PubMed]
  22. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, "In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy," Opt. Express 14, 6178-6187 (2006). [CrossRef] [PubMed]
  23. S.-Y. Chen and C.-K. Sun, "In vivo imaging of human skin using harmonic generation microscopy," in Abstract of Focus on Microsc. 2008, pp. 59 (2008).
  24. L. H. Kligman, "The ultraviolet-irradiated hairless mouse: A model for photoaging," J. Am. Acad. Dermatol. 21, 623-631 (1989). [CrossRef] [PubMed]
  25. S. Inomata, Y. Matsunaga, S. Amano, K. Takada, K. Kobayashi, M. Tsunenaga, T. Nishiyama, Y. Kohno, and M. Fukuda, "Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse," J. Invest. Dermatol. 120, 128-134 (2003). [CrossRef] [PubMed]
  26. M. G. Dunn and F. H. Silver, "Viscoelastic behavior of human connective tissue: relative contribution of viscous and elastic components," Connect. Tissue Res. 12, 59-70 (1983). [CrossRef] [PubMed]
  27. S. Osaki, "Distribution map of collagen fiber orientation in a whole calf leather," Anat. Rec. 254, 147-152 (1999). [CrossRef] [PubMed]
  28. W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, "Transmission of human-epidermis and stratum-corneum as a function of thickness in the ultraviolet and visible wavelengths," Photochem. Photobiol. 40, 485-494 (1984). [CrossRef] [PubMed]
  29. L. H. Kligman, F. J. Akin, and A. M. Kligman. "The Contributions of UVA and UVB to connective tissue damage in hairless mice," J. Invest. Dermatol. 84, 272-276 (1985). [CrossRef] [PubMed]
  30. G. J. Fisher, S. C. Datta, H. S. Talwar, Z.-Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, "Molecular basis of sun-induced premature skin ageing and retinoid antagonism," Nature 379, 335-339 (1996). [CrossRef] [PubMed]
  31. G. J. Fisher, H. S. Talwar, J. Lin, and J. J. Voorhees, "Molecular mechanisms of photoaging in human skin in vivo and their prevention by all-trans retinoic acid," Photochem. Photobiol. 69, 154 - 157 (1998). [CrossRef]
  32. D. Fagot, D. Asselineau, and F. Bernerd, "Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation," Arch. Dermatol. Res. 293, 576-583 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3399 KB)     
» Media 2: MOV (2999 KB)     
» Media 3: MOV (4034 KB)     
» Media 4: MOV (3748 KB)     
» Media 5: MOV (3011 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited