OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 924–932

Plasmonic focusing with a coaxial structure illuminated by radially polarized light

Avner Yanai and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 924-932 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a plasmonic lens that is illuminated by a radially polarized light. The lens is made of a coax-like geometry consisting of an annular dielectric slit surrounded by metal. Focusing efficiency is enhanced by the use of a circular grating assisting the coupling of light into surface plasmons. Further enhancement is obtained by introducing a circular Bragg grating on top of the structure, reflecting the surface plasmon modes that are propagating in the counter-focus direction. Using the Finite-Difference Time-Domain approach we investigate the transmission and the focusing mechanisms, and study the effect of structural parameters on the performance of the plasmonic lens.

© 2009 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: November 14, 2008
Revised Manuscript: January 6, 2009
Manuscript Accepted: January 8, 2009
Published: January 12, 2009

Avner Yanai and Uriel Levy, "Plasmonic focusing with a coaxial structure illuminated by radially polarized light," Opt. Express 17, 924-932 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. W.  Liu, J. M.  Steele, W.  Srituravanich, Y.  Pikus, C.  Sun, and X.  Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett.  5, 1726-1729 (2005). [CrossRef] [PubMed]
  2. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006). [CrossRef] [PubMed]
  3. Z.W. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88171108 (2006). [CrossRef]
  4. D. Z. Lin, C.H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens", Appl. Phys. Lett. 92, 233106 (2008). [CrossRef]
  5. L.  Yin, V. K.  Vlasko-Vlasov, J.  Pearson, J. M.  Hiller, J.  Hua, U.  Welp, D. E.  Brown, and C. W.  Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett.  5,1399-1402 (2005). [CrossRef] [PubMed]
  6. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007). [CrossRef]
  7. H. Kim, J. Hahn, and B. Lee, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008). [CrossRef] [PubMed]
  8. Q. Zhan, "Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam," Opt. Lett. 31, 1726-1728 (2006). [CrossRef] [PubMed]
  9. W. Chen and Q. Zhan, "Optimal plasmonic focusing with radial polarization," Proc. SPIE,  6450, 64500D (2007) [CrossRef]
  10. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901-1 - 213901-4 (2003). [CrossRef]
  11. Y. Peng, X. Wang, and K. Kempa, "TEM-like optical mode of a coaxial nanowaveguide," Opt. Express 16, 1758-1763 (2008). [CrossRef] [PubMed]
  12. P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching," Opt. Express 15, 6762-6767 (2007). [CrossRef] [PubMed]
  13. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  14. Y. Takakura, "Optical Resonance in a Narrow Slit in a Thick Metallic Screen," Phys. Rev. Lett. 86, 5601-5603 (2001). [CrossRef] [PubMed]
  15. Wulin Jia, Xiaohan Liu, "Mechanism of the superenhanced light transmission through 2D subwavelength coaxial hole arrays," Phys. Lett. A,  344 (6), 451-456 (2005). [CrossRef]
  16. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of surface plasmon generation at nanoslit apertures," Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006) [CrossRef] [PubMed]
  18. http://ab-initio.mit.edu/meep/
  19. G. M. Lerman and U. Levy, "Effect of radial polarization and apodization on spot size under tight focusing conditions," Opt. Express 16, 4567-4581 (2008). [CrossRef] [PubMed]
  20. S. Quabis, R. Dorn, M. Eberler, O. Glöckl and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  21. R. Dorn, S. Quabis, and G. Leuchs, "Sharper Focus for a Radially Polarized Light Beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  22. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002). [PubMed]
  23. U. Levy, C. H. Tsai, L. Pang and Y. Fainman, "Engineering space-variant inhomogeneous media for polarization control," Opt. Lett. 29, 1718-1720 (2004). [CrossRef] [PubMed]
  24. Y. Kozawa and S. Sato, "Focusing property of a double-ring-shaped radially polarized beam," Opt. Lett. 31, 820-822 (2006). [CrossRef] [PubMed]
  25. B. Hao and J. Leger, "Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam," Opt. Express 15, 3550-3556 (2007). [CrossRef] [PubMed]
  26. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  27. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Approximate model for surface-plasmon generation at slit apertures," J. Opt. Soc. Am. A 23, 1608-1615 (2006). [CrossRef]
  28. M. Born and E. Wolf, "Basic properties of the electromagnetic field," in Principles of optics, M. Born and E. Wolf (Pergamon press, 1980), pp. 39-40.
  29. R. Gordon and P. Marthandam, "Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film," Opt. Express 15, 12995-13002 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (265 KB)     
» Media 2: MOV (935 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited