OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 933–940

Fast light in silicon ring resonator with resonance-splitting

Qiang Li, Ziyang Zhang, Jing Wang, Min Qiu, and Yikai Su  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 933-940 (2009)
http://dx.doi.org/10.1364/OE.17.000933


View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report experimental demonstration of fast light in an over-coupled ultra-compact silicon ring resonator with resonance-splitting. Strong mutual-coupling induced by the grating inside the ring leads to split resonances and accompanying large anomalous dispersion, thus providing a new approach to realizing fast light in the over-coupled region of the ring resonator. In the experiment, a maximum pulse advancement of 130 ps with low distortion is achieved for a 1-ns signal pulse in a 10-μm-radius silicon ring resonator. The observed pulse advancement agrees well with the theoretical calculation based on coupled mode theory.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.4555) Optical devices : Coupled resonators

ToC Category:
Slow and Fast Light

History
Original Manuscript: July 31, 2008
Revised Manuscript: September 25, 2008
Manuscript Accepted: September 25, 2008
Published: January 13, 2009

Citation
Qiang Li, Ziyang Zhang, Jing Wang, Min Qiu, and Yikai Su, "Fast light in silicon ring resonator with resonance-splitting," Opt. Express 17, 933-940 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-933


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow-light in telecommunications," Opt. Photonics News 17, 18-23 (2006). [CrossRef]
  2. E. Parra and J. R. Lowell, "Toward applications of slow light technology," Opt. Photonics News 18, 40-45 (2007). [CrossRef]
  3. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000). [CrossRef] [PubMed]
  4. A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, "Signal velocity, causality, and quantum noise in superluminal light pulse propagation," Phys. Rev. Lett. 86, 3925-3929 (2001). [CrossRef] [PubMed]
  5. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003). [CrossRef] [PubMed]
  6. R. Y. Chiao and P. W. Milonni, "Fast Light, Slow Light," Opt. Photonics News 13, 26-30 (2002), [CrossRef]
  7. K. Y. Song, M. González Herráez, and L. Thévenaz, "Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers," Opt. Express 13, 9758-9765 (2005). [CrossRef] [PubMed]
  8. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber," Europhys. Lett. 73, 218-224 (2006). [CrossRef]
  9. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, "Observation of backward pulse propagation through a medium with a negative group velocity," Science 312, 895-897 (2006). [CrossRef]
  10. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H. J. Chang, R. W. Boyd, Q. Park, and D. J. Gauthier, "Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier," Opt. Lett. 32, 906-908 (2007). [CrossRef] [PubMed]
  11. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  12. H. Su and S. L. Chuang, "Room temperature slow and fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061102 (2006). [CrossRef]
  13. B. Pesala, F. Sedgwick, A. V. Uskov, and C. Chang-Hasnain, "Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers," Opt. Express 15, 15863-15867 (2007). [CrossRef] [PubMed]
  14. B. Pesala, Z. Chen, A. V. Uskov, and C. Chang-Hasnain, "Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers," Opt. Express 14, 12968-12975 (2006). [CrossRef] [PubMed]
  15. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000). [CrossRef] [PubMed]
  16. Md. A. I. Talukder, Y. Amagishi, and M. Tomita, "Superluminal to subluminal transition in the pulse propagation in a resonant absorbing medium," Phys. Rev. Lett. 86, 3546-3549 (2001). [CrossRef] [PubMed]
  17. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  18. K. Totsuka and M. Tomita, "Slow and fast light in a microsphere-optical fiber system," J. Opt. Soc. Am. B 23, 2194-2199 (2006). [CrossRef]
  19. K. Totsuka and M. Tomita, "Observation of fast light in Mie scattering processes," Phys. Rev. E 73, 045602(R) (2006).
  20. G. T. Reed, "The optical age of silicon," Nature 427, 595-596 (2004). [CrossRef] [PubMed]
  21. B. Jalali, "Teaching silicon new tricks," Nat. Photonics 1, 193-195 (2007). [CrossRef]
  22. F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007). [CrossRef]
  23. J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides: toward the slowing and storage of light," Opt. Photonics News,  16, 36-40 (2005). [CrossRef]
  24. J. E. Heebner and R. W. Boyd, "‘Slow’ and ‘fast’ light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002). [CrossRef]
  25. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, "Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling," Opt. Express 16, 4621-4630 (2008). [CrossRef] [PubMed]
  26. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  27. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  28. D. D. Smith and H. Chang, "Coherence phenomena in coupled optical resonators," J. Mod. Opt. 51, 2503-2513 (2004).
  29. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, "Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides," Opt. Express 15, 9625-9630 (2007). [CrossRef] [PubMed]
  30. F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect," IEEE J. Sel. Top. Quantum Electron. 14, 706-712 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited