OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 941–946

Active photonic crystal terahertz laser

A. Benz, Ch. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 941-946 (2009)
http://dx.doi.org/10.1364/OE.17.000941


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design and the realization of active photonic crystal (PhC) semiconductor lasers. The PhC consists of semiconductor nanostructure pillars which provide gain at a quantized transition energy. The vertical layer sequence is that of a terahertz quantum cascade laser. Thereby, the artificial crystal itself provides the optical gain and the lateral confinement. The cavities do not rely on a central defect, the lasing is observed in flat-band regions at high symmetry points. The experimental results are in excellent agreement with the finite-difference time-domain simulations. For the vertical confinement a double-metal waveguide is used. The lasers are showing a stable single-mode emission under all driving conditions. Varying the period of the PhC allows to tune the frequency by 400 GHz.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(260.3090) Physical optics : Infrared, far
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 12, 2008
Revised Manuscript: October 23, 2008
Manuscript Accepted: October 28, 2008
Published: January 13, 2009

Citation
A. Benz, Ch. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, "Active photonic crystal terahertz laser," Opt. Express 17, 941-946 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "Real-time terahertz imaging over a standoff distance (>25 meters)," Appl. Phys. Lett. 89, 141125 (2006). [CrossRef]
  2. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer," Appl. Phys. Lett. 86, 244104 (2005). [CrossRef]
  3. H.-W. Hubers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, "High-resolution gas phase spectroscopy with distributed feedback terahertz quantum cascade lasers," Appl. Phys. Lett. 89, 061115 (2006). [CrossRef]
  4. R. Kohler, A. Tredicucci, H. E. Beere, E. H. Lienfield, A. G. Davis, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature (London) 417, 156-159 (2002). [CrossRef]
  5. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007). [CrossRef]
  6. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008). [CrossRef] [PubMed]
  7. J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, "Phase-resolved measurements of stimulated emission in a laser," Nature (London) 449, 698-701 (2007). [CrossRef]
  8. O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006). [CrossRef] [PubMed]
  9. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-128 (2007). [CrossRef] [PubMed]
  10. L. A. Dunbar, R. Houdr, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007). [CrossRef]
  11. G. Fasching, A. Benz, A. M. Andrews, R. Zobl, T. Roch,W. Schrenk, G. Strasser, K. Unterrainer, and V. Tamosiunas, "Sub-wavelength terahertz quantum-cascade laser resonators (presented conference paper style)," presented at CLEO06, Los Angeles, CA, May 21-26, 2006 (2006).
  12. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdr, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005). [CrossRef] [PubMed]
  13. A. Benz, G. Fasching, C. Deutsch, A. M. Andrews, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, "Terahertz photonic crystal resonators in double-metal waveguides," Opt. Express 15, 12418-12424 (2007). [CrossRef] [PubMed]
  14. S. Nojima, "Optical-gain enhancement in two-dimensional active photonic crystals," J. Appl. Phys. 90, 545-551 (2001). [CrossRef]
  15. H. Zhang, L. A. Dunbar, G. Scalari, R. Houdre, and J. Faist, "Terahertz photonic crystal quantum cascade lasers," Opt. Express 15, 16818-16827 (2007). [CrossRef] [PubMed]
  16. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015-1017 (2002). [CrossRef]
  17. A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, "The influence of doping on the performance of terahertz quantum-cascade lasers," Appl. Phys. Lett. 90, 101107 (2007). [CrossRef]
  18. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  19. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  20. K. Sakoda, "Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals," Opt. Express 4, 167-176 (1999). [CrossRef] [PubMed]
  21. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in fdtd," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  22. S. Nojima, "Single-mode laser oscillation in semiconductor gain photonic crystals," Jpn. J. Appl. Phys. 38, 867-869 (1999). [CrossRef]
  23. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  24. G. Fasching, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch, W. Schrenk, and G. Strasser, "Terahertz microcavity quantum-cascade lasers," Appl. Phys. Lett. 87, 211112 (2005). [CrossRef]
  25. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electron. Lett. 42, 89-90 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited