OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 947–955

Evidence of Raman-induced polarization pulling

Mario Martinelli, Matteo Cirigliano, Maddalena Ferrario, Lucia Marazzi, and Paolo Martelli  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 947-955 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2481 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interest towards passive control of the light polarization through nonlinear effects has been stimulated by recent works: in particular a polarization pulling effect has been obtained by means of stimulated Brillouin scattering. Here we investigate the condition for obtaining polarization pulling by exploiting the stimulated Raman scattering, which is most suitable for optical communications thanks to its large gain bandwidth. The role of the polarization-dependent Raman amplification and of the random fiber birefringence is clarified by theoretical considerations and numerical simulations starting from the vector theory of the Raman effect in optical fiber. Experiments carried out with a 1571-nm signal and high-power 1486-nm pump evidence the Raman-induced polarization pulling.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.5650) Nonlinear optics : Raman effect
(260.5430) Physical optics : Polarization

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 15, 2008
Revised Manuscript: November 14, 2008
Manuscript Accepted: November 16, 2008
Published: January 13, 2009

Mario Martinelli, Matteo Cirigliano, Maddalena Ferrario, Lucia Marazzi, and Paolo Martelli, "Evidence of Raman-induced polarization pulling," Opt. Express 17, 947-955 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Oswald and C. K. Madsen, "Deterministic analysis of endless tuning of polarization controllers," J. Lightwave Technol. 24, 2932-2939 (2006). [CrossRef]
  2. M. Martinelli, P. Martelli, and S. M. Pietralunga, "Polarization stabilization in optical communications systems," J. Lightwave Technol. 24, 4172-4183 (2006). [CrossRef]
  3. B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008). [CrossRef]
  4. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, "Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling," Opt. Lett. 25, 257-259 (2000). [CrossRef]
  5. S. Pitois, A. Sauter, and G. Millot, "Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers," Opt. Lett. 29, 599-601 (2004). [CrossRef] [PubMed]
  6. S. Pitois, J. Fatome, and G. Millot, "Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths," Opt. Express 16, 6646-6651 (2008). [CrossRef] [PubMed]
  7. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, "All-optical polarization control through Brillouin amplification," in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.
  8. M. O. van Deventer and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," J. Lightwave Technol. 12, 585-590 (1994). [CrossRef]
  9. J. Bromage, "Raman amplification for fiber communications systems," J. Lightwave Technol. 22, 79-93 (2004). [CrossRef]
  10. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1159 (1979). [CrossRef]
  11. R. Hellwarth, J. Cherlow, and T. Yang, "Origin and frequency dependence of nonlinear optical susceptibilities of glasses," Phys. Rev. B 11, 964-967 (1975). [CrossRef]
  12. Q. Lin and G. P. Agrawal, "Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers," J. Opt. Soc. Am. B 20, 1616-1631 (2003). [CrossRef]
  13. Q. Lin and G. P. Agrawal, "Statistics of polarization-dependent gain in fiber-based Raman amplifiers," Opt. Lett. 28, 227-229 (2003). [CrossRef] [PubMed]
  14. A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, "Polarized backward Raman amplification in randomly birefringent fibers," J. Lightwave Technol. 24, 4055-4063 (2006). [CrossRef]
  15. H. Kogelnik, R. M. Jopson, and L. E. Nelson, "Polarization mode dispersion," in Optical fiber telecommunications IV B - Systems and impairments, I. Kaminow and T. Li, ed. (Academic Press, San Diego, 2002).
  16. A. Galtarossa, Y. Jung, M. J. Kim, B. H. Lee, K. Oh, U. Paek, L. Palmieri, A. Pizzinat, and L. Schenato, "Effects of spin inaccuracy on PMD reduction in spun fibers," J. Lightwave Technol. 23, 4184-4191 (2005). [CrossRef]
  17. P. K. A. Wai and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence" J. Lightwave Technol. 14, 148-157 (1996). [CrossRef]
  18. M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-345 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited