OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17269–17278

Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer

Qiang Wang, Zhaoqi Deng, and Dongge Ma  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17269-17278 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140° forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency. More importantly, the optically optimized device structure by setting the resonant wavelength at the peak wavelength of the intrinsic emission of the emitter and adding an effective outcoupling layer further enhances the device efficiency, at the same time, also reduces the color shift with viewing angles, leading to the simultaneous optimization in efficiency and angular emission characteristics in the fabricated ITOLEDs.

© 2009 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

Original Manuscript: June 22, 2009
Revised Manuscript: September 1, 2009
Manuscript Accepted: September 5, 2009
Published: September 14, 2009

Qiang Wang, Zhaoqi Deng, and Dongge Ma, "Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer," Opt. Express 17, 17269-17278 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. Rep. 39(5-6), 143–222 (2002). [CrossRef]
  2. J. Y. Lee, J. H. Kwon, and H. K. Chung, “High efficiency and low power consumption in active matrix organic light emitting diodes,” Org. Electron. 4(2-3), 143–148 (2003). [CrossRef]
  3. J.-H. Lee, X. Zhu, Y.-H. Lin, W. K. Choi, T.-C. Lin, S.-C. Hsu, H.-Y. Lin, and S.-T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005). [CrossRef] [PubMed]
  4. W. Ji, L. Zhang, R. Gao, L. Zhang, W. Xie, H. Zhang, and B. Li, “Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment,” Opt. Express 16(20), 15489–15494 (2008). [CrossRef] [PubMed]
  5. J. T. Lim, C. H. Jeong, J. H. Lee, G. Y. Yeom, E.-C. Shin, E. H. Lee, and T. W. Kim, “High-Luminance Top-Emitting Organic Light-Emitting Diodes Using Cs/Al/Au as the Semitransparent Multimetal Cathode,” J. Electrochem. Soc. 154(10), J302–J305 (2007). [CrossRef]
  6. C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, “Advanced Organic Light-Emitting Devices for Enhancing Display Performances,” J. Display Tech. 1(2), 248–266 (2005). [CrossRef]
  7. S. Kho, S. Sohn, and D. Jung, “Effects of N2 Plasma Treatment of the Al Bottom Cathode on the Characteristics of Top-Emission-Inverted Organic-Light-Emitting Diodes,” Jpn. J. Appl. Phys. 42(Part 2, No. 5B), L552–L555 (2003). [CrossRef]
  8. C.-W. Chen, C.-L. Lin, and C.-C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices,” Appl. Phys. Lett. 85(13), 2469–2471 (2004). [CrossRef]
  9. H. W. Choi, S. Y. Kim, W. Kim, K. Hong, and J. Lee, “Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,” Appl. Phys. Lett. 87(8), 082102 (2005). [CrossRef]
  10. X. Zhu, J. Sun, H. Peng, M. Wong, and H.-S. Kwok, “Inverted Top-Emitting Organic Light-Emitting Devices Using Vanadium Pentoxide as Anode Buffer Layer,” SID Int. Symp. Digest Tech. Papers 36(1), 793–795 (2005). [CrossRef]
  11. M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009). [CrossRef]
  12. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994). [CrossRef]
  13. S. Dirr, S. Wiese, H.-H. Johannes, and W. Kowalsky, “Organic Electro- and Photoluminescent Microcavity Devices,” Adv. Mater. 10(2), 167–171 (1998). [CrossRef]
  14. T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, and D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67(10), 1355–1357 (1995). [CrossRef]
  15. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996). [CrossRef]
  16. S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97(9), 093102 (2005). [CrossRef]
  17. Y. Meng, W. Xie, G. Xie, L. Zhang, Y. Zhao, J. Hou, and S. Liu, “Highly efficient blue top-emitting device with phase-shift adjustment layer,” Opt. Express 17(7), 5364–5372 (2009). [CrossRef] [PubMed]
  18. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89(1), 420–424 (2001). [CrossRef]
  19. K. R. Choudhury, J. Yoon, and F. So, “LiF as an n-Dopant in Tris-(8-hydroxyquinoline) Aluminum Thin Films,” Adv. Mater. 20(8), 1456–1461 (2008). [CrossRef]
  20. H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, and K. Seki, “Energy-Level Alignment at Model Interfaces of Organic Electroluminescent Devices Studied by UV Photoemission: Trend in the Deviation from the Traditional Way of Estimating the Interfacial Electronic Structures,” IEEE J. Sel. Top. Quantum Electron. 4(1), 24–33 (1998). [CrossRef]
  21. Y. Yi, S. J. Kang, K. Cho, J. M. Koo, K. Han, K. Park, M. Noh, C. N. Whang, and K. Jeong, “Origin of the improved luminance-voltage characteristics and stability in organic light-emitting device using CsCl electron injection layer,” Appl. Phys. Lett. 86(21), 213502 (2005). [CrossRef]
  22. M. Matsumura, T. Akai, M. Saito, and T. Kimura, “Height of the energy barrier existing between cathodes and hydroxyquinoline–aluminum complex of organic electroluminescence devices,” J. Appl. Phys. 79(1), 264–268 (1996). [CrossRef]
  23. W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2(1), 1–36 (2001). [CrossRef]
  24. W. Gao and A. Kahn, “Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects,” Org. Electron. 3(2), 53–63 (2002). [CrossRef]
  25. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited