OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17303–17316

Dynamic multimode analysis of Q-switched solid state laser cavities

M. Wohlmuth, C. Pflaum, K. Altmann, M. Paster, and C. Hahn  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17303-17316 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (579 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive a new model and simulation technique called “Dynamic Multimode Analysis (DMA)” to simulate the 3-dimensional dynamic behavior of a laser. A Gaussian mode analysis is used to obtain resonator eigenmodes taking into account thermal aberrations. These modes are coupled by a set of rate equations to describe the dynamic behavior of the individual modes for cw and Q-switched lasers. Our approach analyzes mode competition and provides a detailed description of the laser beam in terms of output power, beam quality factor M2, and pulse shape. Comparison of experimental data with our simulation results provides new insight into the effect of mode competition and the operation of Q-switched lasers.

© 2009 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory
(140.3540) Lasers and laser optics : Lasers, Q-switched
(350.6830) Other areas of optics : Thermal lensing
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 20, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: September 6, 2009
Published: September 14, 2009

M. Wohlmuth, C. Pflaum, K. Altmann, M. Paster, and C. Hahn, "Dynamic multimode analysis of Q-switched solid state laser cavities," Opt. Express 17, 17303-17316 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16(4), 196–198 (1991). [CrossRef] [PubMed]
  2. A. E. Siegman, Lasers, (University Science Books, Mill Valley, 1986).
  3. O. Svelto, Principles of lasers (Springer, New York, 1998).
  4. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–458 (1961).
  5. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35(12), 1912–1918 (1999). [CrossRef]
  6. O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of Q-switched 2 mum Tm,Ho:YLF laser,” Opt. Express 15(7), 3940–3947 (2007). [CrossRef] [PubMed]
  7. G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser by taking into account intracavity laser spatial distribution,” Opt. Commun. 234(1-6), 321–328 (2004). [CrossRef]
  8. K. Altmann, C. Pflaum, and D. Seider, “Three-dimensional finite element computation of laser cavity eigenmodes [corrected],” Appl. Opt. 43(9), 1892–1901 (2004). [CrossRef] [PubMed]
  9. B. Heubeck, C. Pflaum, and G. Steinle, “New finite elements for large-scale simulation of optical Waves,” SIAM J. Sci. Comput. 31(2), 1063–1081 (2009). [CrossRef]
  10. B. Heubeck and C. Pflaum, “Numerical simulation of multiple modes in solid state lasers,” Proc. SPIE 6190, 61900X (2006). [CrossRef]
  11. LAS-CAD GmbH Munich, Germany, http://www.las-cad.com/ .
  12. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14(13), 6069–6074 (2006). [CrossRef] [PubMed]
  13. W. Koechner, Solid-state laser engineering, (Springer, Berlin, 2006).
  14. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993). [CrossRef]
  15. Q. Zhang, B. Ozygus, and H. Weber, “Degeneration effects in laser cavities,” Eur. Phys. J. Appl. Phys. 6(3), 293–298 (1999). [CrossRef]
  16. S. Wang, X. Wang, T. Riesbeck, and H. J. Eichler, “Thermal lensing effects in pulsed end pumped Nd lasers at 940 nm,” Proc. SPIE 7194, 71940J (2009). [CrossRef]
  17. R. J. LeVeque, Finite volume methods for hyperbolic problems (Cambridge Texts in Applied Mathematics, 2007).
  18. E. Hairer, and G. Wanner, Solving ordinary differential Eqs. (2): Stiff and differential-algebraic problems, (Springer, Berlin, 1996).
  19. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29(4), 1212–1217 (1993). [CrossRef]
  20. International Organization for Standardization EN ISO 11146:2000 and EN ISO 11146:1999,” Laser and laser-related equipment. Test methods for laser beam parameters. Beam width, divergence angle and beam propagation factor,” (ISO, Geneva, 2000).
  21. F. Träger, Springer Handbook of Lasers and Optics (Springer, Berlin, 2007), Chap. 11.2.
  22. J. J. Degnan, “Theory of the Optimally Coupled Q-Switched Laser,” IEEE J. Quantum Electron. 25(2), 214–220 (1989). [CrossRef]
  23. R. B. Kay and D. Poulios, “Q-Switched Rate Equations for Diode Side-Pumped Slab and Zigzag Slab Lasers Including Gaussian Beam Shapes,” IEEE J. Quantum Electron. 41(10), 1278–1284 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1420 KB)     
» Media 2: MOV (915 KB)     
» Media 3: MOV (733 KB)     
» Media 4: MOV (576 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited