OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17324–17337

A distance meter using a terahertz intermode beat in an optical frequency comb

Shuko Yokoyama, Toshiyuki Yokoyama, Yuki Hagihara, Tsutomu Araki, and Takeshi Yasui  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17324-17337 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a distance meter that utilizes an intermode beat of terahertz frequency in an optical frequency comb to perform high resolution and high dynamic range absolute distance measurements. The proposed system is based on a novel method, called multiheterodyne cross-correlation detection, in which intermode beat frequencies are scaled down to radio frequencies by optical mixing of two detuned optical frequency combs with a nonlinear optical crystal. Using this method, we obtained a 1.056 THz intermode beat and achieved a distance resolution of 0.820 μm from its phase measurement. Absolute distance measurement using 1.056 THz and 8.187 GHz intermode beats was also demonstrated in the range of 10 mm, resulting in a precision of 0.688 μm.

© 2009 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.4050) Lasers and laser optics : Mode-locked lasers
(280.3400) Remote sensing and sensors : Laser range finder

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 30, 2009
Revised Manuscript: September 5, 2009
Manuscript Accepted: September 9, 2009
Published: September 14, 2009

Shuko Yokoyama, Toshiyuki Yokoyama, Yuki Hagihara, Tsutomu Araki, and Takeshi Yasui, "A distance meter using a terahertz intermode beat in an optical frequency comb," Opt. Express 17, 17324-17337 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Dändliker, R. Thalmann, and D. Prongue, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13(5), 339–341 (1988). [CrossRef] [PubMed]
  2. S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using an two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10(12), 1233–1239 (1999). [CrossRef]
  3. I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998). [CrossRef]
  4. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28(11), 890–892 (2003). [CrossRef] [PubMed]
  5. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]
  6. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004). [CrossRef] [PubMed]
  7. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  8. K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006). [CrossRef] [PubMed]
  9. N. Schuhler, Y. Salvade, S. Leveque, R. Dandliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006). [CrossRef] [PubMed]
  10. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008). [CrossRef] [PubMed]
  11. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000). [CrossRef]
  12. K. Minoshima, Y. Sakai, H. Takahashi, H. Inaba, and S. Kawato, “Direct comparison of absolute distance meter using an optical comb and integrated optical interferometer with an optical sub-wavelength accuracy”, in CLEO 2009, Technical Digest(CD)(Optical Society of America, 2009), paper CTuS6.
  13. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef] [PubMed]
  14. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005). [CrossRef] [PubMed]
  15. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006). [CrossRef]
  16. D. C. Williams, Optical methods in engineering metrology (Chaoman & Hall,1993), Chap.5.
  17. A. Yariv, Optical Electronics in modern communications 5th edition(Oxford University Press,1997),Chap.8.
  18. CASIX, Crystal guide ’99
  19. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited