OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17344–17356

M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere

Yangsheng Yuan, Yangjian Cai, Jun Qu, Halil T. Eyyuboğlu, Yahya Baykal, and Olga Korotkova  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17344-17356 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (538 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analytical formula is derived for the M2 -factor of coherent and partially coherent dark hollow beams (DHB) in turbulent atmosphere based on the extended Huygens-Fresnel integral and the second-order moments of the Wigner distribution function. Our numerical results show that the M2 - factor of a DHB in turbulent atmosphere increases on propagation, which is much different from its invariant properties in free-space, and is mainly determined by the parameters of the beam and the atmosphere. The relative M2 -factor of a DHB increases slower than that of Gaussian and flat-topped beams on propagation, which means a DHB is less affected by the atmospheric turbulence than Gaussian and flat-topped beams. Furthermore, the relative M2 -factor of a DHB with lower coherence, longer wavelength and larger dark size is less affected by the atmospheric turbulence. Our results will be useful in long-distance free-space optical communications.

© 2009 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(030.0030) Coherence and statistical optics : Coherence and statistical optics

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 14, 2009
Revised Manuscript: August 14, 2009
Manuscript Accepted: September 8, 2009
Published: September 14, 2009

Yangsheng Yuan, Yangjian Cai, Jun Qu, Halil T. Eyyuboğlu, Yahya Baykal, and Olga Korotkova, "M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere," Opt. Express 17, 17344-17356 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2C14 (1990).
  2. R. Martinez-Herrero and P. M. Mejias, “Second-order spatial characterization of hard-edge diffracted beams,” Opt. Lett. 18(19), 1669–1671 (1993). [PubMed]
  3. R. Martinez-Herrero, P. M. Mejias, and M. Arias, “Parametric characterization of coherent, lowest-order Gaussian beams propagation through hard-edged apertures,” Opt. Lett. 20(2), 124–126 (1995). [PubMed]
  4. F. Gori, M. Santarsiero, and A. Sona, “The change of width for a partially coherent beam on paraxial propagation,” Opt. Commun. 82(3-4), 197–203 (1991).
  5. M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa, “Spreading properties of beams radiated by partially coherent Schell-model sources,” J. Opt. Soc. Am. A 16(1), 106–112 (1999).
  6. B. Zhang, X. Chu, and Q. Li, “Generalized beam-propagation factor of partially coherent beams propagating through hard-edged apertures,” J. Opt. Soc. Am. A 19(7), 1370–1375 (2002).
  7. X. Chu, B. Zhang, and Q. Wen, “Generalized M2 factor of a partially coherent beam propagating through a circular hard-edged aperture,” Appl. Opt. 42(21), 4280–4284 (2003). [PubMed]
  8. P. A. Belanger, “Beam quality factor of the LP01 mode of the step-index fiber,” Opt. Eng. 32(9), 2107–2109 (1993).
  9. P. A. Belanger, Y. Champagne, and C. Pare, “Beam-propagation factor of diffracted laser-beams,” Opt. Commun. 105(3-4), 233–242 (1994).
  10. S. A. Amarande, “Beam propagation factor and the kurtosis parameter of flattened Gaussian beams,” Opt. Commun. 129, 311–317 (1996).
  11. S. Saghafi and C. J. R. Sheppard, “The beam propagation factor for higher order Gaussian beams,” Opt. Commun. 153(4-6), 207–210 (1998).
  12. B. Lü, B. Zhang, and H. Ma, “Beam-propagation factor and mode-coherence coefficients of hyperbolic-cosine Gaussian beams,” Opt. Lett. 24(10), 640–642 (1999).
  13. Z. Mei and D. Zhao, “The generalized beam propagation factor of truncated standard and elegant Laguerre-Gaussian beams,” J. Opt. A, Pure Appl. Opt. 6(11), 1005–1011 (2004).
  14. D. Deng, Z. Xia, C. Wei, J. Shao, and Z. Fan, “Far-field intensity distribution, M2 factor of beams generated by Gaussian mirror resonator,” Optik (Stuttg.) 118(11), 533–536 (2007).
  15. G. Zhou, “Beam propagation factors of a Lorentz-Gauss beam,” Appl. Phys. B 96(1), 149–153 (2009).
  16. J. Yin, W. Gao, and Y. Zhu, “Generation of dark hollow beams and their applications,” in Progress in Optics, Vol. 44, E. Wolf, ed., North-Holland, Amsterdam, 2003, pp.119–204.
  17. X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18(10), 767–768 (1993). [PubMed]
  18. H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49(6), 4922–4927 (1994). [PubMed]
  19. J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138(4-6), 287–292 (1997).
  20. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [PubMed]
  21. Z. Liu, H. Zhao, J. Liu, J. Lin, M. A. Ahmad, and S. Liu, “Generation of hollow Gaussian beams by spatial filtering,” Opt. Lett. 32(15), 2076–2078 (2007). [PubMed]
  22. Z. Liu, J. Dai, X. Sun, and S. Liu, “Generation of hollow Gaussian beam by phase-only filtering,” Opt. Express 16(24), 19926–19933 (2008). [PubMed]
  23. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491–495 (1987).
  24. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
  25. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000).
  26. Y. Cai, X. Lu, and Q. Lin, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28(13), 1084–1086 (2003). [PubMed]
  27. Z. Mei and D. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A 22(9), 1898–1902 (2005).
  28. Y. Cai, “Model for an anomalous hollow beam and its paraxial propagation,” Opt. Lett. 32(21), 3179–3181 (2007). [PubMed]
  29. D. Deng, H. Yu, S. Xu, G. Tian, and Z. Fan, “Nonparaxial propagation of vectorial hollow Gaussian beams,” J. Opt. Soc. Am. B 25(1), 83–87 (2008).
  30. Y. Cai and S. He, “Propagation of hollow Gaussian beams through apertured paraxial optical systems,” J. Opt. Soc. Am. A 23(6), 1410–1418 (2006).
  31. G. Wu, Q. Lou, and J. Zhou, “Analytical vectorial structure of hollow Gaussian beams in the far field,” Opt. Express 16(9), 6417–6424 (2008). [PubMed]
  32. Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006). [PubMed]
  33. Y. Chen, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation properties of dark hollow beams in a weak turbulent atmosphere,” Appl. Phys. B 90(1), 87–92 (2008).
  34. D. Deng, “Generalized M2-factor of hollow Gaussian beams through a hard-edge circular aperture,” Phys. Lett. A 341(1-4), 352–356 (2005).
  35. D. Deng, X. Fu, C. Wei, J. Shao, and Z. Fan, “Far-field intensity distribution and M2 factor of hollow Gaussian beams,” Appl. Opt. 44(33), 7187–7190 (2005). [PubMed]
  36. Z. Mei and D. Zhao, “Generalized M2 factor of hard-edged diffracted controllable dark-hollow beams,” Opt. Commun. 263(2), 261–266 (2006).
  37. Y. Cai and L. Zhang, “Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation,” J. Opt. Soc. Am. B 23(7), 1398–1407 (2006).
  38. X. Lu and Y. Cai, “Partially coherent circular and elliptical dark hollow beams and their paraxial propagations,” Phys. Lett. A 369(1-2), 157–166 (2007).
  39. C. Zhao, Y. Cai, F. Wang, X. Lu, and Y. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33(12), 1389–1391 (2008). [PubMed]
  40. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Washington, 2001).
  41. L. C. Andrews, and R. L. Phillips, Laser beam propagation in the turbulent atmosphere, 2nd edition, SPIE press, Bellington, 2005.
  42. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002).
  43. O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281, 2342–2348 (2008).
  44. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117 (2006).
  45. R. J. Noriega-Manez and J. C. Gutiérrez-Vega, “Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere,” Opt. Express 15(25), 16328–16341 (2007). [PubMed]
  46. Y. Cai, “Propagation of various flat-topped beams in a turbulent atmosphere,” J. Opt. A, Pure Appl. Opt. 8(6), 537–545 (2006).
  47. C. Y. Young, Y. V. Gilchrest, and B. R. Macon, “Turbulence-induced beam spreading of higher-order mode optical waves,” Opt. Eng. 41, 1097–1103 (2002).
  48. M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008).
  49. H. T. Eyyuboğlu, “Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence,” Opt. Laser Technol. 40(1), 156–166 (2008).
  50. Y. Dan and B. Zhang, “Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere,” Opt. Express 16(20), 15563–15575 (2008). [PubMed]
  51. Y. Dan and B. Zhang, “Second moments of partially coherent beams in atmospheric turbulence,” Opt. Lett. 34(5), 563–565 (2009). [PubMed]
  52. M. H. Mahdieh, “Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor,” Opt. Commun. 281(13), 3395–3402 (2008).
  53. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  54. A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited