OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17357–17368

Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries

Thomas Vallaitis, Siegwart Bogatscher, Luca Alloatti, Pieter Dumon, Roel Baets, Michelle L. Scimeca, Ivan Biaggio, François Diederich, Christian Koos, Wolfgang Freude, and Juerg Leuthold  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17357-17368 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Geometry, nonlinearity, dispersion and two-photon absorption figure of merit of three basic silicon-organic hybrid waveguide designs are compared. Four-wave mixing and heterodyne pump-probe measurements show that all designs achieve high nonlinearities. The fundamental limitation of two-photon absorption in silicon is overcome using silicon-organic hybrid integration, with a five-fold improvement for the figure of merit (FOM). The value of FOM = 2.19 measured for silicon-compatible nonlinear slot waveguides is the highest value published.

© 2009 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.3120) Optical devices : Integrated optics devices
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optics

Original Manuscript: July 15, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: September 9, 2009
Published: September 14, 2009

Thomas Vallaitis, Siegwart Bogatscher, Luca Alloatti, Pieter Dumon, Roel Baets, Michelle L. Scimeca, Ivan Biaggio, François Diederich, Christian Koos, Wolfgang Freude, and Juerg Leuthold, "Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries," Opt. Express 17, 17357-17368 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007). [CrossRef]
  2. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14(20), 1140–1142 (1989). [CrossRef] [PubMed]
  3. K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55(18), 1823–1825 (1989). [CrossRef]
  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  5. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). [CrossRef] [PubMed]
  6. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003). [CrossRef]
  7. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007). [CrossRef]
  8. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006). [CrossRef] [PubMed]
  9. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008). [CrossRef]
  10. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). [CrossRef]
  11. ePIXfab, http://www.epixfab.eu .
  12. T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” in Chem. Commun.(2005), pp. 737–739.
  13. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high optical quality supramolecular assembly for third- order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008). [CrossRef]
  14. T.-T. Kung, C.-T. Chang, J.-C. Dung, and S. Chi, “Four-Wave Mixing Between Pump and Signal in a Distributed Raman Amplifier,” J. Lightwave Technol. 21(5), 1164–1170 (2003). [CrossRef]
  15. M. Wu and W. I. Way, “Fiber Nonlinearity Limitations in Ultra-Dense WDM Systems,” J. Lightwave Technol. 22(6), 1483–1498 (2004). [CrossRef]
  16. T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7 Gbit/s in a 4 mm long silicon-organic hybrid waveguide,” in Proc. Optical Fiber Communication Conference (OFC'09), San Diego (CA), USA, 22.–26.03.2009(2009), p. OWS3.
  17. J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13(8), 1803–1816 (1996). [CrossRef]
  18. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008). [CrossRef] [PubMed]
  19. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 µm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004). [CrossRef]
  20. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  21. B. L. Lawrence, M. Cha, J. U. Kang, W. Toruellas, G. Stegeman, G. Baker, J. Meth, and S. Etemad, “Large purely refractive nonlinear index of single crystal P-toluene sulphonate (PTS) at 1600 nm,” Electron. Lett. 30(5), 447–448 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited