OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17369–17375

Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling

E. Epp, N. Ponnampalam, J. N. McMullin, and R. G. DeCorby  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17369-17375 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the thermal tuning of air-core Bragg waveguides, fabricated by controlled formation of delamination buckles within a multilayer stack of chalcogenide glass and polymer. The upper cladding mirror is a flexible membrane comprising high thermal expansion materials, enabling large tuning of the air-core dimensions for small changes in temperature. Measurements on the temperature dependence of feature heights showed good agreement with theoretical predictions. We applied this mechanism to the thermal tuning of modal cutoff conditions in waveguides with a tapered core profile. Due to the omnidirectional nature of the cladding mirrors, these tapers can be viewed as waveguide-coupled, tunable Fabry-Perot filters.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: June 8, 2009
Revised Manuscript: September 3, 2009
Manuscript Accepted: September 6, 2009
Published: September 15, 2009

E. Epp, N. Ponnampalam, J. N. McMullin, and R. G. DeCorby, "Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling," Opt. Express 17, 17369-17375 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008). [CrossRef] [PubMed]
  2. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009). [CrossRef] [PubMed]
  3. H.-K. Chiu, F.-L. Hsiao, C.-H. Chan, and C.-C. Chen, “Compact and low-loss bent hollow waveguides with distributed Bragg reflector,” Opt. Express 16(19), 15069–15073 (2008). [CrossRef] [PubMed]
  4. F. Koyama, T. Miura, and Y. Sakurai, “Tunable hollow waveguides and their applications for photonic integrated circuits,” Electronics and Communications in Japan 29(Part 2), 9–19 (2006).
  5. A. T. T. D. Tran, Y. H. Lo, Z. H. Zhu, D. Haronian, and E. Mozdy, “Surface micromachined Fabry-Perot tunable filter,” IEEE Photon. Technol. Lett. 8(3), 393–395 (1996). [CrossRef]
  6. P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett. 34(20), 1967–1968 (1998). [CrossRef]
  7. Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Tunable multichannel optical filter based on silicon photonic band gap materials actuation,” Appl. Phys. Lett. 81(22), 4112–4114 (2002). [CrossRef]
  8. H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett. 38(20), 1201–1202 (2002). [CrossRef]
  9. S. Irmer, J. Daleiden, V. Rangelov, C. Prott, F. Romer, M. Strassner, A. Tarraf, and H. Hillmer, “Ultralow biased widely continuously tunable Fabry-Perot filter,” IEEE Photon. Technol. Lett. 15(3), 434–436 (2003). [CrossRef]
  10. C. F. R. Mateus, M. C. Y. Huang, and C. J. Chang-Hasnain, “Micromechanical tunable optical filters: general design rules for wavelengths from near-IR up to 10 μm,” Sensors and Actuators A 119(1), 57–62 (2005). [CrossRef]
  11. Y. Sakurai, H. Yamakawa, Y. Yokota, A. Matsutani, T. Sakaguchi, and F. Koyama, “Hollow Waveguide Distributed Bragg Reflector for Widely Tunable Optical Devices,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuM4.
  12. Y. Sakurai and F. Koyama, “Tunable hollow waveguide distributed Bragg reflectors with variable air core,” Opt. Express 12(13), 2851–2856 (2004). [CrossRef] [PubMed]
  13. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009). [CrossRef] [PubMed]
  14. N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007). [CrossRef] [PubMed]
  15. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008). [CrossRef] [PubMed]
  16. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004). [CrossRef]
  17. M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004). [CrossRef]
  18. S. R. Choi, J. W. Hutchinson, and A. G. Evans, “Delamination of multilayer thermal barrier coatings,” Mech. Mater. 31(7), 431–447 (1999). [CrossRef]
  19. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and flexible free-standing all-dielectric omnidirectional reflectors,” Adv. Mater. 19(2), 193–196 (2007). [CrossRef]
  20. R.G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, J.N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” submitted for publication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited