OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17450–17456

Probing the momentum relaxation time of charge carriers in ultrathin layers with terahertz radiation

Stefan Funk, Guillermo Acuna, Matthias Handloser, and Roland Kersting  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17450-17456 (2009)
http://dx.doi.org/10.1364/OE.17.017450


View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development of a terahertz time-domain technique for measuring the momentum relaxation time of charge carriers in ultrathin semiconductor layers. Making use of the Drude model, our phase sensitive modulation technique directly provides the relaxation time. Time-resolved THz experiments were performed on n-doped GaAs and show precise agreement with data obtained by electrical characterization. The technique is well suited for studying novel materials where parameters such as the charge carriers’ effective mass or the carrier density are not known a priori.

© 2009 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: August 12, 2009
Revised Manuscript: September 14, 2009
Manuscript Accepted: September 14, 2009
Published: September 15, 2009

Citation
Stefan Funk, Guillermo Acuna, Matthias Handloser, and Roland Kersting, "Probing the momentum relaxation time of charge carriers in ultrathin layers with terahertz radiation," Opt. Express 17, 17450-17456 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17450


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990). [CrossRef]
  2. M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41(17), 12140–12149 (1990). [CrossRef]
  3. T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett. 77(16), 2452–2454 (2000). [CrossRef]
  4. O. Ostroverkhova, D. G. Cooke, S. Shcherbyna, R. F. Egerton, F. A. Hegmann, and J. E. Anthony, “Bandlike transport in pentacene and functionalized pentacene thin films revealed by subpicosecond transient photoconductivity measurements,” Phys. Rev. B 71(3), 035204 (2005). [CrossRef]
  5. P. Parkinson, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Transient THz conductivity of GaAs nanowires,” Nano Lett. 7(7), 2162–2165 (2007). [CrossRef]
  6. X. Ai, M. C. Beard, K. P. Knutsen, S. E. Shaheen, G. Rumbles, and R. J. Ellingson, “Photoinduced charge carrier generation in a poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25462–25471 (2006). [CrossRef] [PubMed]
  7. T.-I. Jeon and D. Grischkowsky, “Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon,” Appl. Phys. Lett. 72(18), 2259–2261 (1998). [CrossRef]
  8. E. Hendry, M. Koeberg, B. O’Regan, and M. Bonn, “Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy,” Nano Lett. 6(4), 755–759 (2006). [CrossRef] [PubMed]
  9. N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001). [CrossRef]
  10. D. W. Davidson and R. H. Cole, “Dielectric relaxation in glycerol, propylene glycol, and n-propanol,” J. Chem. Phys. 19(12), 1484–1490 (1951). [CrossRef]
  11. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Sect. A 203(1), 385–420 (1904). [CrossRef]
  12. M. Schall and P. U. Jepsen, “Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy,” Opt. Lett. 25(1), 13–15 (2000). [CrossRef]
  13. In fact, the THz response scales with the sample's plasma frequency given by carrier density, effective mass, and background permittivity.
  14. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999). [CrossRef]
  15. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18(7), 1562–1570 (2001). [CrossRef]
  16. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009). [CrossRef]
  17. M. Fischer, M. Dressel, B. Gompf, A. K. Tripathi, and J. Pflaum, “Infrared spectroscopy on the charge accumulation layer in rubrene single crystals,” Appl. Phys. Lett. 89(18), 182103 (2006). [CrossRef]
  18. M. P. de Haas, R. J. O. M. Hoofman, L. D. A. Siebbeles, and J. M. Warman, “Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly (phenylene vinylene),” Nature 392(6671), 54–56 (1998). [CrossRef]
  19. S. J. Allen, D. C. Tsui, and F. DeRosa, “Frequency dependence of the electron conductivity in the silicon inversion layer in the metallic and localized regimes,” Phys. Rev. Lett. 35(20), 1359–1362 (1975). [CrossRef]
  20. H. Scher and E. W. Montroll, “Anomalous transit-time dispersion in amorphous solids,” Phys. Rev. B 12(6), 2455–2477 (1975). [CrossRef]
  21. M. Pollak, “On dispersive transport by hopping and by trapping,” Philos. Mag. 36(5), 1157–1169 (1977). [CrossRef]
  22. P. Drude, “Zur Elektronentheorie der Metalle,” Annalen der Physik 306(3), 566–613 (1900). [CrossRef]
  23. N. Ashcroft and D. Mermin, Solid State Physics (Harcourt, 1976).
  24. M. Dressel and G. Grüner, Electrodynamics of Solids - Optical Properties of Electrons in Matter (Cambridge University press, 2002).
  25. S. Sze, Semiconductor Devices (John Wiley & Sons, 1985).
  26. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005). [CrossRef]
  27. G. Acuna, F. Buersgens, C. Lang, M. Handloser, A. Guggenmos, and R. Kersting, “Interdigitated Terahertz Emitters,” Electron. Lett. 44(3), 229–231 (2008). [CrossRef]
  28. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996). [CrossRef]
  29. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18(3), 313–317 (2001). [CrossRef]
  30. To be more specific, E0y and E1y were measured after passage through the GaAs-wafer and the optical detection system. This does not affect differential quantities.
  31. F. M. Smits, “Measurement of sheet resistivities with the four-point probe,” Bell Syst. Tech. J. 37, 711–718 (1958).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited