OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17457–17470

A method towards simulating the total luminous flux of a monochromatic high power LED operated in a pulsed manner

M.C. Moolman, W.D. Koek, and H.P. Urbach  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17457-17470 (2009)
http://dx.doi.org/10.1364/OE.17.017457


View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High power light-emitting diodes (HPLEDs) are frequently being operated in a pulsed manner. The research presented here focuses on the optical, electrical and thermal behaviour of a HPLED under pulse width modulation (PWM), and has the following twofold aim. Firstly, investigating the temperature dependence of the HPLED’s efficiency, where it was found that the exact method of operation and the definition of calculation is crucial when making claims. Secondly, we propose a method to simulate the absolute emitted luminous flux of a current driven HPLED under PWM. This is done by making use of experimentally determined characteristic parameters of the HPLED. This has as advantage that no further physical measurements are needed to investigate the HPLEDs behavior under numerous different PWM circumstances.

© 2009 Optical Society of America

OCIS Codes
(120.5240) Instrumentation, measurement, and metrology : Photometry
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

History
Original Manuscript: July 13, 2009
Revised Manuscript: September 10, 2009
Manuscript Accepted: September 11, 2009
Published: September 15, 2009

Citation
M. C. Moolman, W. D. Koek, and H. P. Urbach, "A method towards simulating the total luminous flux of a monochromatic high power LED operated in a pulsed manner," Opt. Express 17, 17457-17470 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17457


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. V. Steele, "The story of a new light source," Nat. Photonics 1, 25-26 (2007). [CrossRef]
  2. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Prospects for LED lighting," Nat. Photonics 3, 180-182 (2009). [CrossRef]
  3. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. George Craford, "Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting," J. Display Technol. 3, 160-175 (2007). [CrossRef]
  4. J. K. Kim and E. F Schubert, "Transcending the replacement paradigm of solid-state lighting," Opt. Express 16, 21835-21842 (2008). [CrossRef] [PubMed]
  5. P. Manninen and P. Orrevetelainen, "On spectral and thermal behaviors of AlGaInP light-emitting diodes under pulse-width modulation," Appl. Phys. Lett. 91, 181121 (2007). [CrossRef]
  6. Y. Gu, N. Narendran, T. Dong, and H. Wu, "Spectral and luminous efficacy change of high-power LEDs under different dimming methods," Proc. SPIE 6337, 63370J (2006).
  7. L. Yang,. J. Hu, and M. Shin, "Dynamic Thermal Analysis of High-Power LEDs at Pulse Conditions," Electron. Device Lett. 29, 863-866 (2008). [CrossRef]
  8. M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, "Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285 nm," Appl. Phys. Lett. 82, 167-169 (2003). [CrossRef]
  9. W. R. McCluney and R. McCluney, Introduction to Radiometry and Photometry (Artech House, 1994).
  10. R. W. Boyd, Radiometry and the detection of optical radiation (Artech House, 1994).
  11. CIE, The Basis of Physical Photometry, 2nd ed. (publ. no. 18.2 1983).
  12. CIE, International Lighting Vocabulary (publ. no. 17.4" 1987).
  13. E. F. Schubert, Light-Emitting Diodes, Second Edition (Cambridge, 2006). [CrossRef]
  14. S. C. Bera, R. V. Singh, and V. K. Garg, "Temperature Behavior and Compensation of Light-Emitting Diode," IEEE Photon. Technol. Lett. 17, 2286-2288 (2005). [CrossRef]
  15. S. Figge, T. Bottcher, D. Hommel, C. Zellweger, and M. Ilegems, "Heat generation and dissipation in GaN-based light emitting devices," Phys. Status Solidi A,  200(1), 83-86 (2003). [CrossRef]
  16. J. Senawiratne, Y. Li, M. Zhu, Y. Xia, W. Zhao, T. Detchprohm, A. Chatterjee, J. L. Plawsky, and C. Wetzel, "Junction Temperature Measurements and Thermal Modeling of GaInN/GaN Quantum Well Light-Emitting Diodes," J. Electron. Mater. 37, 607-610 (2008). [CrossRef]
  17. Y. Xi, J.-Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman "Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods," Appl. Phys. Lett. 86, 031907 (2005). [CrossRef]
  18. Y. Xi and E. F. Schubert, "Junction temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," Appl. Phys. Lett. 85, 2163-2165 (2004). [CrossRef]
  19. H. Ryu, K. Ha, J. Chae, O. N. Nam, and Y. Park, "Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics," Appl. Phys. Lett. 87, 093506 (2005). [CrossRef]
  20. H. Ra, K. S. Song, C. Ok and Y. Hahn, "Heat transfer behavior of high-power light-emitting diode packages," Korean J. Chem. Engin. 24, 197-203 (2007). [CrossRef]
  21. N. Chen, C. Lin, Y. Yang, C. Shen, T. Wang, and M. Wu, "Measurement of Junction Temperature in a Nitride Light-Emitting Diode," Jpn. J. Appl. Phys. 47, 8779-8782 (2008). [CrossRef]
  22. A. Keppens,W. R. Ryckaert, G. Deconick, and P. Hanselaer, "High power light-emitting diode junction temperature determination from current-voltage characteristics," J. Appl. Phys. 104, 093104.1-093104.8 (2008). [CrossRef]
  23. Y. Ohno, "Color Rendering and Luminous Efficacy of White LED Spectra," Proc. SPIE Vol. 5530, 88-89 (2004).
  24. M. Kim, M. F. Schubert, Q. Dai, J. Kyu Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efciency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91,183507-183509 (2007). [CrossRef]
  25. L. Jayasinghe and Y. Gu, and N. Nadarajah, "Characterization of thermal resistance coefficient of high-power LEDs," Proc. SPIE 6337, 63370V (2006).
  26. W. Nakwaski and A. M. Kontkiewicz, "Temperature distribution in a light-emitting diode during a pulse operation," Electron. Lett. 20, 984-985 (1984). [CrossRef]
  27. G. K. Wachutka, "Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling," IEEE Trans. Comp. Aided Design 9, 1141-1149 (1990). [CrossRef]
  28. B-J. Huang and C-W. Tang, and M-S. Wu, "System dynamics model of high-power LED luminaire," Appl. Therm. Eng. 29, 609-616 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited