OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17491–17501

Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers

Song-Woo Lee, Gunho Jo, Takhee Lee, and Yong-Gu Lee  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17491-17501 (2009)
http://dx.doi.org/10.1364/OE.17.017491


View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In2O3 nanowires can be used effectively as building blocks in the production of electronic circuits used in transparent and flexible electronic devices. The fabrication of these devices requires a controlled assembly of nanowires at crucial places and times. However, this kind of controlled assembly, which results in the fusion of nanowires to circuits, is still very difficult to execute. In this study, we demonstrate the benefits of using various lengths of In2O3 nanowires by using non-contact mechanisms, such as scanning optical tweezers, to place them on designated targets during the fabrication process. Furthermore, these nanowires can be stabilized at both ends of the conducting wires using a focused laser, and later in the process, the annealed technique, so that proper flow of electrons is affected.

© 2009 OSA

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: July 22, 2009
Revised Manuscript: September 10, 2009
Manuscript Accepted: September 12, 2009
Published: September 15, 2009

Citation
Song-Woo Lee, Gunho Jo, Takhee Lee, and Yong-Gu Lee, "Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers," Opt. Express 17, 17491-17501 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, “Structural and electrical characterization of intrinsic n-type In2O3 nanowires,” Colloids and Surfaces A 313–314, 308–311 (2008). [CrossRef]
  2. G. Jo, W.-K. Hong, J. I. Sohn, M. Jo, J. Shin, M. E. Welland, H. Hwang, K. E. Geckeler, and T. Lee, “Hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage,” Adv. Mater. 21(21), 2156–2160 (2009). [CrossRef]
  3. S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics,” Nat. Nanotechnol. 2(6), 378–384 (2007). [CrossRef]
  4. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001). [CrossRef] [PubMed]
  5. G. Jo, J. Maeng, T.-W. Kim, W.-K. Hong, M. Jo, H. Hwang, and T. Lee,“Effects of channel-length scaling on In2O3 nanowire field effects transistors studied by conducting atomic force microscopy,” Appl. Phys. Lett. 90(17), 173106 (2007). [CrossRef]
  6. W. U. Wang, C. Chen, L. Keng-hui, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” in Proceeding of the National Academy of Sciences of the USA 102, 3208–3212 (2005).
  7. E. C. Walter, F. Favier, and R. M. Penner, “Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches,” Anal. Chem. 74(7), 1546–1553 (2002). [CrossRef] [PubMed]
  8. A. M. Zaitsev, A. M. Levine, and S. H. Zaidi, “Temperature and chemical sensor based on FIB-written carbon nanowires,” IEEE Sensors 8(6), 849–856 (2008). [CrossRef]
  9. N. Kouklin, L. Menon, A. Z. Wong, D. W. Thompson, J. A. Woollam, P. F. Williams, and S. Bandyopadhyay, “Giant photoresistivity and optically controlled switching in self-assembled nanowires,” Appl. Phys. Lett. 79(26), 4423–4425 (2001). [CrossRef]
  10. Q. Li and V. W.-W. Yam, “Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires,” Angew. Chem. 119(19), 3556–3559 (2007). [CrossRef]
  11. H. Bao, C. M. Li, X. Cui, Q. Song, H. Yang, and J. Guo, “Single-crystalline Bi2S3 nanowire network film and its optical switches,” Nanotechnology 19(33), 335302 (2008). [CrossRef] [PubMed]
  12. D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3(9), 1255–1259 (2003). [CrossRef]
  13. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003). [CrossRef]
  14. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291(5504), 630–633 (2001). [CrossRef] [PubMed]
  15. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000). [CrossRef]
  16. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001). [CrossRef] [PubMed]
  17. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008). [CrossRef] [PubMed]
  18. A. T. Ohta, S. L. Neale, H.-Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in Proceedings of the IEEE/LEOS Optical MEMS and Nanophotonics (Freiburg, Germany 2008), pp. 7–8.
  19. R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38(22), 4861–4869 (1999). [CrossRef]
  20. R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40(12), 1961–1973 (2001). [CrossRef]
  21. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13(22), 8906–8912 (2005). [CrossRef] [PubMed]
  22. T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004). [CrossRef]
  23. ChanHyuk Nam, Dongjin Lee, Daehie Hong and Jong-Heun Lee, “Manipulation of nano devices with optical tweezers,” in Proceeding of Nanoengineering Symposium (Daejeon, Korea, 2005), pp. 387–391.
  24. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006). [CrossRef] [PubMed]
  25. A. Balijepalli, T. W. LeBrun, and S. K. Gupta, “A flexible system framework for a nanoassembly cell using optical tweezers,” in Proceedings of the ASME Design Engineering Technical Conference (Philadelphia, Pennsylvania, USA 2006).
  26. A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. M. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15(18), 11629–11639 (2007). [CrossRef] [PubMed]
  27. J. Plewa, E. Tanner, D. M. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12(9), 1978–1981 (2004). [CrossRef] [PubMed]
  28. S.-W. Lee, T. Lee, and Y.-G. Lee, “Stable manipulating of nanowires by line optical tweezers with haptic feedback,” Proc. SPIE 6644, 66441X (2007). [CrossRef]
  29. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008). [CrossRef] [PubMed]
  30. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005). [CrossRef] [PubMed]
  31. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the T-matrix formalism: erratum,” Opt. Express 15(22), 14618 (2007). [CrossRef] [PubMed]
  32. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Radiation torque on nonspherical particles in the transition matrix formalism,” Opt. Express 14(20), 9508–9521 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited