OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17502–17516

Optical spectroscopy detects histological hallmarks of pancreatic cancer

Robert H. Wilson, Malavika Chandra, James Scheiman, Diane Simeone, Barbara McKenna, Julianne Purdy, and Mary-Ann Mycek  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17502-17516 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An empirical model was developed to interpret differences in the experimentally measured reflectance and fluorescence spectra of freshly excised human pancreatic tissues: normal, adenocarcinoma, and pancreatitis (inflammation). The model provided the first quantitative links between spectroscopic measurements and histological characteristics in the human pancreas. The reflectance model enabled the first (to our knowledge) extraction of wavelength resolved absorption and reduced scattering coefficients for normal and diseased human pancreatic tissues. The fluorescence model employed reflectance information to extract attenuation free “intrinsic” endogenous fluorescence spectra from normal pancreatic tissue, pancreatic adenocarcinoma, and pancreatitis. The method developed is simple, intuitive, and potentially useful for a range of applications in optical tissue diagnostics. This approach is potentially applicable to in vivo studies, because it can account for the absorptive effects of blood in tissues.

© 2009 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 27, 2009
Revised Manuscript: June 30, 2009
Manuscript Accepted: September 6, 2009
Published: September 16, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Robert H. Wilson, Malavika Chandra, James Scheiman, Diane Simeone, Barbara McKenna, Julianne Purdy, and Mary-Ann Mycek, "Optical spectroscopy detects histological hallmarks of pancreatic cancer," Opt. Express 17, 17502-17516 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Cancer Statistics 2008,” www.cancer.org .
  2. W. Hartwig, L. Schneider, M. K. Diener, F. Bergmann, M. W. Büchler, and J. Werner, “Preoperative tissue diagnosis for tumours of the pancreas,” Br. J. Surg. 96(1), 5–20 (2009). [CrossRef]
  3. A. Fritscher-Ravens, L. Brand, W. T. Knöfel, C. Bobrowski, T. Topalidis, F. Thonke, A. de Werth, and N. Soehendra, “Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pancreatic lesions in patients with normal parenchyma and chronic pancreatitis,” Am. J. Gastroenterol. 97(11), 2768–2775 (2002). [CrossRef] [PubMed]
  4. S. C. Abraham, R. E. Wilentz, C. J. Yeo, T. A. Sohn, J. L. Cameron, J. K. Boitnott, and R. H. Hruban, “Pancreaticoduodenectomy (Whipple resections) in patients without malignancy: Are They All ‘Chronic Pancreatitis’?” Am. J. Surg. Pathol. 27(1), 110–120 (2003). [CrossRef]
  5. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008). [CrossRef] [PubMed]
  6. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. V Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999). [CrossRef]
  7. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006). [CrossRef] [PubMed]
  8. I. Georgakoudi and M. S. Feld, “The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett’s esophagus,” Gastrointest. Endosc. Clin. N. Am. 14(3), 519–537, ix (2004). [CrossRef] [PubMed]
  9. V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt. 14(1), 014004 (2009). [CrossRef] [PubMed]
  10. M. Chandra, J. Scheiman, D. Heidt, D. Simeone, B. McKenna, and M.-A. Mycek, “Probing pancreatic disease using tissue optical spectroscopy,” J. Biomed. Opt. 12(6), 060501 (2007). [CrossRef]
  11. M. Chandra, D. Heidt, D. Simeone, B. McKenna, J. Scheiman, and M.-A. Mycek, “Pancreatic tissue assessment using fluorescence and reflectance spectroscopy,” Proc. SPIE 6628, 66281R (2007), 8 pgs.
  12. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M. A. Mycek, “Mathematical modeling of reflectance and intrinsic fluorescence for early cancer detection in human pancreatic tissue,” Proc. SPIE 7187, 71870H (2009), 9 pgs.
  13. M. Chandra, K. Vishwanath, G. D. Fichter, E. Liao, S. J. Hollister, and M.-A. Mycek, “Quantitative molecular sensing in biological tissues: an approach to non-invasive optical characterization,” Opt. Express 14(13), 6157–6171 (2006). [CrossRef] [PubMed]
  14. A. Sefkow, M. Bree, and M.-A. Mycek, “A method for measuring cellular optical absorption and scattering evaluated using dilute cell suspension phantoms,” Appl. Spectrosc. 55(11), 1495–1501 (2001). [CrossRef]
  15. C. F. Bohren, and D. A. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).
  16. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. V Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998). [CrossRef]
  17. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh Modeling of Visible-Light Scattering in Neonatal Skin,” Appl. Opt. 34(31), 7410–7418 (1995). [CrossRef] [PubMed]
  18. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999). [CrossRef]
  19. F. Lin and G. Staerkel, “Cytologic criteria for well differentiated adenocarcinoma of the pancreas in fine-needle aspiration biopsy specimens,” Cancer 99(1), 44–50 (2003). [CrossRef] [PubMed]
  20. M. B. Cohen, D. P. Egerter, E. A. Holly, D. K. Ahn, and T. R. Miller, “Pancreatic adenocarcinoma: regression analysis to identify improved cytologic criteria,” Diagn. Cytopathol. 7(4), 341–345 (1991). [CrossRef] [PubMed]
  21. R. J. Sears, C. W. Duckworth, C. Decaestecker, N. Bourgeois, T. Ledent, J. Deviere, I. Salmon, R. Kiss, and P. Yeaton, “Image cytometry as a discriminatory tool for cytologic specimens obtained by endoscopic retrograde cholangiopancreatography,” Cancer 84(2), 119–126 (1998). [CrossRef] [PubMed]
  22. T. Imamura, H. Iguchi, T. Manabe, G. Ohshio, T. Yoshimura, Z. H. Wang, H. Suwa, S. Ishigami, and M. Imamura, “Quantitative-Analysis of Collagen and Collagen Subtype-I, Subtype-Iii, and Subtype-V in Human Pancreatic-Cancer, Tumor-Associated Chronic-Pancreatitis, and Alcoholic Chronic-Pancreatitis,” Pancreas 11(4), 357–364 (1995). [CrossRef] [PubMed]
  23. S. Prahl, “Optical Absorption of Hemoglobin” (Oregon Medical Laser Center). http://omlc.ogi.edu/spectra/hemoglobin/ .
  24. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008). [CrossRef] [PubMed]
  25. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  26. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett. 27(4), 246–248 (2002). [CrossRef]
  27. R. Rzepko, K. Jaśkiewicz, M. Klimkowska, A. Nałecz, and E. Izycka-Swieszewska, “Microvascular density in chronic pancreatitis and pancreatic ductal adenocarcinoma,” Folia Histochem. Cytobiol. 41(4), 237–239 (2003). [PubMed]
  28. K. Vishwanath and M.-A. Mycek, “Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?” Opt. Lett. 29(13), 1512–1514 (2004). [CrossRef] [PubMed]
  29. K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models,” Opt. Express 13(19), 7466–7482 (2005). [CrossRef] [PubMed]
  30. P. Hillemanns, J. Reiff, H. Stepp, and P. Soergel, “Lymph node metastasis detection of ovarian cancer by porphyrin fluorescence photodetection: case report,” Lasers Med. Sci. 22(3), 131–135 (2007). [CrossRef] [PubMed]
  31. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  32. J. C. Finlay and T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett. 29(9), 965–967 (2004). [CrossRef] [PubMed]
  33. J. Köninger, N. A. Giese, F. F. di Mola, P. Berberat, T. Giese, I. Esposito, M. G. Bachem, M. W. Büchler, and H. Friess, “Overexpressed decorin in pancreatic cancer: potential tumor growth inhibition and attenuation of chemotherapeutic action,” Clin. Cancer Res. 10(14), 4776–4783 (2004). [CrossRef] [PubMed]
  34. R. H. Hruban, K. Takaori, D. S. Klimstra, N. V. Adsay, J. Albores-Saavedra, A. V. Biankin, S. A. Biankin, C. Compton, N. Fukushima, T. Furukawa, M. Goggins, Y. Kato, G. Klöppel, D. S. Longnecker, J. Lüttges, A. Maitra, G. J. Offerhaus, M. Shimizu, and S. Yonezawa, “An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms,” Am. J. Surg. Pathol. 28(8), 977–987 (2004). [CrossRef] [PubMed]
  35. R. H. Hruban, N. V. Adsay, J. Albores-Saavedra, C. Compton, E. S. Garrett, S. N. Goodman, S. E. Kern, D. S. Klimstra, G. Klöppel, D. S. Longnecker, J. Lüttges, and G. J. Offerhaus, “Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions,” Am. J. Surg. Pathol. 25(5), 579–586 (2001). [CrossRef] [PubMed]
  36. G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt. 47(27), 4965–4973 (2008). [CrossRef] [PubMed]
  37. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998). [CrossRef]
  38. M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13(2), 024015 (2008). [CrossRef] [PubMed]
  39. M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40(25), 4633–4646 (2001). [CrossRef]
  40. G. M. Palmer and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13(2), 024017 (2008). [CrossRef] [PubMed]
  41. J. C. Finlay and T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited