OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17517–17529

Transmission function properties for multi-layered structures: Application to super-resolution

N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17517-17529 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the properties of the transmission function in the k-space for a generic multi-layered structure. In particular we analytically demonstrate that a transmission greater than one in the evanescent spectrum (amplification of the evanescent modes) can be directly linked to the guided modes supported by the structure. Moreover we show that the slope of the phase of the transmission function in the propagating spectrum is inversely proportional to the ability of the structure to compensate the diffraction of the propagating modes. We apply these findings to discuss several examples where super-resolution is achieved thanks to the simultaneous availability of the amplification of the evanescent modes and the diffraction compensation of the propagating modes.

© 2009 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: June 8, 2009
Revised Manuscript: June 30, 2009
Manuscript Accepted: June 30, 2009
Published: September 15, 2009

N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, "Transmission function properties for multi-layered structures: Application to super-resolution," Opt. Express 17, 17517-17529 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84(8), 1290 (2004). [CrossRef]
  3. 3N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  4. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419 (2003).
  5. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high trasparency in the visible range,” Appl. Phys. Lett. 90(17), 174113 (2007). [CrossRef]
  6. M. Bloemer, G. D’Aguanno, M. Scalora, N. Mattiucci, and D. de Ceglia, “Energy considertions for a superlens based on metal/dielectric multilayers,” Opt. Express 16, 19342–19353 (2008). [CrossRef]
  7. G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Influence of losses on the super-resolution performances of an impedance matched negative index material,” J. Opt. Soc. Am. B 25(2), 236 (2008). [CrossRef]
  8. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University Press, 1995).
  9. J. Lekner, Theory of reflection, Martin Nijhoff Publishers Dordrecht (1987).
  10. S. A. Shakir and A. F. Turner, “Method of Poles for Multilayer Thin-Film Waveguides,” Appl. Phys., A Mater. Sci. Process. 29(3), 151–155 (1982). [CrossRef]
  11. E. S. C. Ching, P. T. Leung, A Maassen van den Brink, W. M Suen, S. S Tong, and K Young, “Quasi-normal modes expansion for waves in open systems,” Rev. Mod. Phys. 70, 1545 (1998). [CrossRef]
  12. M. Tsang and D. Psaltis, “Reflectionless evanescent-wave amplification by two dielectric planar waveguides,” Opt. Lett. 31(18), 2741–2743 (2006). [CrossRef] [PubMed]
  13. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges,” Phys. Rev. A 77(3), 033848 (2008). [CrossRef]
  14. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105–1-4 (2005). [CrossRef]
  15. G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008). [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press Inc., New York, 1991).
  17. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons, (Academic Press, San Diego 2003).
  18. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006). [CrossRef]
  19. P. Yeh, Optical Waves in Layered Media, (Wiley, New York, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited