OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17555–17562

Optofluidic generation of Laguerre-Gaussian beams

Gavin D. M. Jeffries, Graham Milne, Yiqiong Zhao, Carlos Lopez-Mariscal, and Daniel T. Chiu  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17555-17562 (2009)
http://dx.doi.org/10.1364/OE.17.017555


View Full Text Article

Acrobat PDF (291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laguerre-Gaussian (LG) beams have been extensively studied due to their unique structure, characterized by a phase singularity at the center of the beam. Common methods for generating such beams include the use of diffractive optical elements and spatial light modulators, which although offering excellent versatility, suffers from several drawbacks, including in many cases a low power damage threshold as well as complexity and expense. This paper presents a simple, low cost method for the generation of high-fidelity LG beams using rapid prototyping techniques. Our approach is based on a fluidic-hologram concept, whereby the properties of the LG beam can be finely controlled by varying the refractive-index of the fluid that flows through the hologram. This simple approach, while optimized here for LG beam generation, is also expected to find applications in the production of tunable fluidic optical trains.

© 2009 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(140.3300) Lasers and laser optics : Laser beam shaping
(220.0220) Optical design and fabrication : Optical design and fabrication
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Physical Optics

History
Original Manuscript: July 7, 2009
Revised Manuscript: August 21, 2009
Manuscript Accepted: September 9, 2009
Published: September 16, 2009

Citation
Gavin D. M. Jeffries, Graham Milne, Yiqiong Zhao, Carlos Lopez-Mariscal, and Daniel T. Chiu, "Optofluidic generation of Laguerre-Gaussian beams," Opt. Express 17, 17555-17562 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17555


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]
  2. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 041507 (2007). [CrossRef]
  3. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006). [CrossRef]
  4. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004). [CrossRef]
  5. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005). [CrossRef]
  6. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001). [CrossRef]
  7. P. A. Prentice, M. P. MacDonald, T. G. Frank, A. Cuschier, G. C. Spalding, W. Sibbett, P. A. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12(4), 593–600 (2004). [CrossRef]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical trapping of particles,” Opt. Lett. 21(11), 827–829 (1996). [CrossRef]
  9. R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Q. Zhao, D. McGloin, and D. T. Chiu, “Vortex-Trap-Induced Fusion of Femtoliter-Volume Aqueous Droplets,” Anal. Chem. 79(1), 224–228 (2007). [CrossRef]
  10. G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angew. Chem. Int. Ed. 46(8), 1326–1328 (2007). [CrossRef]
  11. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
  12. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre-Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998). [CrossRef]
  13. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000). [CrossRef]
  14. G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007). [CrossRef]
  15. G. D. M. Jeffries, J. S. Edgar, Y. Q. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007). [CrossRef]
  16. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Progress in Optics 39, 291–372 (1999). [CrossRef]
  17. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004). [CrossRef]
  18. G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt. 40(1), 73–87 (1993). [CrossRef]
  19. S. S. R. Oemrawsingh, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices,” J. Opt. Soc. Am. A 21(11), 2089–2096 (2004). [CrossRef]
  20. I. V. Basistiy, V. A. Pasko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A, Pure Appl. Opt. 6(5), S166–S169 (2004). [CrossRef]
  21. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” N. J. Phys. 6, 71 (2004). [CrossRef]
  22. J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express 16(2), 993–1006 (2008). [CrossRef]
  23. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901–133904 (2003). [CrossRef]
  24. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  25. W. M. Lee, X. C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239(1-3), 129–135 (2004). [CrossRef]
  26. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008). [CrossRef]
  27. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  28. Philips, “Fluid Focus”, retrieved http://www.research.philips.com/technologies/projects/fluidfocus.html .
  29. G. S. Fiorini, G. D. M. Jeffries, D. S. W. Lim, C. L. Kuyper, and D. T. Chiu, “Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds,” Lab Chip 3(3), 158–163 (2003). [CrossRef]
  30. G. S. Fiorini and D. T. Chiu, “Disposable microfluidic devices: fabrication, function, and application,” Biotechniques 38(3), 429–446 (2005). [CrossRef]
  31. J. S. Kuo, L. Y. Ng, G. S. Yen, R. M. Lorenz, P. G. Schiro, J. S. Edgar, Y. X. Zhao, D. S. W. Lim, P. B. Allen, G. D. M. Jeffries, and D. T. Chiu, “A new USP Class VI-compliant substrate for manufacturing disposable microfluidic devices,” Lab Chip 9(7), 870–876 (2009). [CrossRef]
  32. O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2-3), 149–159 (1999). [CrossRef]
  33. R. A. Instruments, “Sucrose solution Brix values versus refractive index,” (2008).
  34. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev.A, Atomic Molec. Opt. Phys. 66(4), 043801–043805 (2002). [CrossRef]
  35. M. Golic, K. Walsh, and P. Lawson, “Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature,” Appl. Spectrosc. 57(2), 139–145 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited