OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17570–17581

Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation

Ivan D. Rukhlenko, Dayan Handapangoda, Malin Premaratne, Anatoly V. Fedorov, Alexander V. Baranov, and Chennupati Jagadish  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17570-17581 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we theoretically analyze the emission of guided polaritons accompanying spontaneous recombination in a semiconductor quantum dot coupled to metallic nanowire. This study is aimed to shed light on the interaction between optically excited quantum emitters and metallic nanowaveguides beyond the validity of dipole approximation. To the best of our knowledge, this is the first time the geometry of quantum emitter and spatial inhomogeneity of the electric field constituting the fundamental polariton mode are fully taken into account. Even though we performed the analysis for disk-like quantum dot, all the conclusions are quite general and remain valid for any emitter with nanometer dimensions. Particularly, we found that the strong inhomogeneity of the electric field near the nanowire surface results in a variety of dipole-forbidden transitions in the quantum dot energy spectra. It was also unambiguously shown that there is a certain nanowire radius that gives maximum emission efficiency into the fundamental polariton mode. Since the dipole approximation breaks for nanowires with small radii and relatively big nanoemitters, the above features need to be considered in the engineering of plasmonic devices for nanophotonic networks.

© 2009 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: July 17, 2009
Revised Manuscript: September 9, 2009
Manuscript Accepted: September 14, 2009
Published: September 16, 2009

Ivan D. Rukhlenko, Dayan Handapangoda, Malin Premaratne, Anatoly V. Fedorov, Alexander V. Baranov, and Chennupati Jagadish, "Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation," Opt. Express 17, 17570-17581 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Abdeldayem, D. O. Frazier, W. K. Witherow, C. E. Banks, B. G. Penn, and M. S. Paley, "Recent advances in photonic devices for optical super computing," in Lecture Notes in Computer Science5172, S. Dolev, T. Haist, and M. Oltean, eds. (Springer-Verlag, 2008), pp. 9-32.
  2. H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007). [PubMed]
  3. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nature Phys. 3, 807-812 (2007).
  4. S. A. Maier, "Plasmonics - towards subwavelength optical devices," Current Nanoscie. 1, 17-23 (2005).
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-829 (2003). [PubMed]
  6. T. Thio, K. M. Pellerin and R. A. Linke, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
  7. J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys. 73, 565-581 (2001).
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
  9. H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992). [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  11. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [PubMed]
  12. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
  13. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [PubMed]
  14. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature 431, 162-167 (2004). [PubMed]
  15. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1998).
  16. S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).
  17. I. I. Smolyaninov, J. Elliott, A. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005). [PubMed]
  18. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
  19. C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, "Fabrication and characterization of metallic nanowires," Phys. Rev. B 56, 2154-2160 (1997).
  20. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005).
  21. S. A. Maier, "Plasmonics: Metal nanostructures for subwavelength photonic devices," IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).
  22. P. J. Pauzauskie and P. Yang, "Nanowire Photonics," Mater. Today 9, 36-45 (2006).
  23. M. Orrit, "Quantum light switch," Nature Phys. 3, 755-756 (2007).
  24. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "Quantum optics with surface plasmons," Phys. Rev. Lett. 97, 053002 (2006). [PubMed]
  25. Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics," Phys. Rev. A 79, 033815 (2009).
  26. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007). [PubMed]
  27. G. Y. Chen, Y. N. Chen, and D. S. Chuu, "Spontaneous emission of a quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008). [PubMed]
  28. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007).
  29. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946).
  30. D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233-236 (1981).
  31. Y. Yamamoto, S. Machida, and G. Bj¨ork, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev. A 44, 657-668 (1991). [PubMed]
  32. M. Born and E. Wolf, Principles of Optics (Pergamon, 1986).
  33. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1962).
  34. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  35. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, and K. Berwick, "Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures," Phys. Rev. B 76, 045332 (2007).
  36. A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, "Intraband carrier relaxation in quantum dots embedded in doped heterostructures," Phys. Rev. B 68, 205318 (2003).
  37. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 8; Electrodynamics of Continuous Media (Elsevier, 2004).
  38. T. Laroche and C. Girard, "Near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 89, 233119 (2006).
  39. T. Laroche, A. Vial, and M. Roussey, "Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires," Appl. Phys. Lett. 91, 123101 (2007).
  40. N. Mori and T. Ando, "Electronoptical-phonon interaction in single and double heterostructures," Phys. Rev. B 40, 6175-6188 (1989).
  41. W. Murray and W. L. Barnes, "Plasmonic materials," Adv. Mater. 19, 3771-3782 (2007).
  42. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1964).
  43. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3; Quantum Mechanics: Non-relativistic Theory (Elsevier, 2003).
  44. I. D. Rukhlenko, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, "Tip-enhanced secondary emission of a semiconductor quantum dot," Phys. Rev. B 77, 045331 (2008).
  45. S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett, "Quantum local-field correlations and spontaneous decay," Phys. Rev. A 60, 1590-1597 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited