OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17596–17602

All-fiber cavity dumping

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17596-17602 (2009)
http://dx.doi.org/10.1364/OE.17.017596


View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cavity dumping of an all-fiber laser system is demonstrated. The active element is a pulse-picker with nanosecond rise time consisting of a microstructured fiber with electrically driven internal electrodes. The device is used for intracavity polarization rotation and dumping through a polarization splitter. The optical flux is removed from the cavity within one roundtrip and most of the amplified spontaneous emission, spiking and relaxation oscillation that follow during the gain recovery phase of the laser are blocked from the output signal.

© 2009 OSA

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(140.3560) Lasers and laser optics : Lasers, ring
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(140.3538) Lasers and laser optics : Lasers, pulsed
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 19, 2009
Revised Manuscript: September 14, 2009
Manuscript Accepted: September 14, 2009
Published: September 16, 2009

Citation
M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, "All-fiber cavity dumping," Opt. Express 17, 17596-17602 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Vuylsteke, “Theory of Laser Regeneration Switching,” J. Appl. Phys. 34(6), 1615–1622 (1963), http://dx.doi.org/10.1063/1.1702644 . [CrossRef]
  2. F. Keilmann and E. Koteles, “Cavity-dumping a mode-locked TEA CO 2 laser,” Opt. Quantum Electron. 12(4), 347–349 (1980), http://dx.doi.org/10.1007/BF00620290 . [CrossRef]
  3. V. Sundström and T. Gillbro, “Pulse properties of a synchronously mode-locked, cavity dumped, picosecond dye laser system,” Appl. Phys., A Mater. Sci. Process. 24, 233–238 (1981), http://dx.doi.org/10.1007/BF00899763 .
  4. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A12O3laser,” Opt. Lett. 18(21), 1822–1824 (1993), http://ol.osa.org/abstract.cfm?URI=ol-18-21-1822 . [CrossRef] [PubMed]
  5. A. Killi, J. Dörring, U. Morgner, M. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13(6), 1916–1922 (2005), http://dx.doi.org/10.1364/OPEX.13.001916 . [CrossRef] [PubMed]
  6. A. Steinmann, A. Killi, G. Palmer, T. Binhammer, and U. Morgner, “Generation of few-cycle pulses directly from a MHz-NOPA,” Opt. Express 14(22), 10627–10630 (2006), http://dx.doi.org/10.1364/OE.14.010627 . [CrossRef] [PubMed]
  7. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-7-3962 . [CrossRef] [PubMed]
  8. J. Schäfer, J. P. Mondia, R. Sharma, and Z. H. Lu, “Quantum Dot Microdrop Laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuJJ6 http://www.opticsinfobase.org/abstract.cfm?URI=URI=CLEO-2008-CTuJJ6
  9. I. Abdulhalim, C. N. Pannell, K. P. Jedrzejewski, and E. R. Taylor, “Cavity dumping of neodymium-doped fibre lasers using an acoustooptic modulator,” Opt. Quantum Electron. 26(11), 997–1001 (1994), http://dx.doi.org/10.1007/BF00304999 . [CrossRef]
  10. C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, “Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm,” IEEE Photon. Technol. Lett. 11(8), 976–978 (1999), http://dx.doi.org/10.1109/68.775318 . [CrossRef]
  11. F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6177 . [CrossRef] [PubMed]
  12. C. J. S. de Matos and W. Margulis, “Optical fibre modulator based on electrostatic attraction,” Opt. Commun. 190(1-6), 135–139 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01036-7 . [CrossRef]
  13. M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-26-22064 . [CrossRef] [PubMed]
  14. A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32(9), 2031–2035 (1993), http://link.aip.org/link/?JOE/32/2031/1 . [CrossRef]
  15. Y. Kaneda, Y. Hu, C. Spiegelberg, J. Geng, and S. Jiang, “Single-frequency, all-fiber Q-switched laser at 1550 nm,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 126 http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2004-126
  16. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14(3), 1106–1112 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-14-3-1106 . [CrossRef] [PubMed]
  17. F. Luo and T. Yeh, “LPFG modulator for fiber laser Q switching,” Proc. SPIE 7195, 719522 (2009), http://link.aip.org/link/?PSI/7195/719522/1 . [CrossRef]
  18. Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34(7), 1024–1026 (2009), http://ol.osa.org/abstract.cfm?URI=ol-34-7-1024 . [CrossRef] [PubMed]
  19. H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32(6), 614–616 (2007), http://ol.osa.org/abstract.cfm?URI=ol-32-6-614 . [CrossRef] [PubMed]
  20. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P. Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15(22), 14948–14953 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-22-14948 . [CrossRef] [PubMed]
  21. Q. L. Williams, J. García-Ojalvo, and R. Roy, “Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: Inclusion of stochastic effects,” Phys. Rev. A 55(3), 2376–2386 (1997), http://dx.doi.org/10.1103/PhysRevA.55.2376 . [CrossRef]
  22. E. M. Pessina, J. Redondo, E. Roldán, and G. J. Valcárcel,“Multimode instability in ring fiber lasers,” Phys. Rev. A 60(3), 2517–2528 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2517 . [CrossRef]
  23. H. D. I. Abarbanel, M. B. Kennel, M. Buhl, and C. T. Lewis, “Chaotic dynamics in erbium-doped fiber ring lasers,” Phys. Rev. A 60(3), 2360–2374 (1999), http://dx.doi.org/10.1103/PhysRevA.60.2360 . [CrossRef]
  24. E. L. Buckland and R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21(15), 1117–1119 (1996), http://ol.osa.org/abstract.cfm?URI=ol-21-15-1117 . [CrossRef] [PubMed]
  25. P. J. Hardman, P. D. Townsend, A. J. Poustie, and K. J. Blow, “Experimental investigation of resonant enhancement of the acoustic interaction of optical pulses in an optical fiber,” Opt. Lett. 21(6), 393–395 (1996), http://ol.osa.org/abstract.cfm?URI=ol-21-6-393 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited