OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17603–17613

Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles

Wei Wang, Yen-Heng Lin, Ruei-Syuan Guan, Ten-Chin Wen, Tzung-Fang Guo, and Gwo-Bin Lee  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17603-17613 (2009)
http://dx.doi.org/10.1364/OE.17.017603


View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a decent polymer material for fabricating optically-induced dielectrophoretic (ODEP) devices, which can manipulate microparticles or cells by using moving light patterns. A thin film of a bulk-heterojunction (BHJ) polymer, a mixture of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester, is used as a light-activated layer. When illuminated by a projected light beam, the photo-induced charge carriers created by the electron transfer of excitons at a donor/acceptor interface in the BHJ layer, disturbs the uniformly-distributed electric field applied on the ODEP devices. A negative DEP force is then generated by virtual electrodes defined by the optical images from a computer-programmable projector to manipulate microparticles, thus providing a functionalized platform for particle manipulation. The effect of the polymer thickness and composition on the magnitude of the generated DEP force has been extensively investigated. The maximum particle drag velocity and the force applied on 20.0 μm diameter polystyrene beads are measured to be approximately 202.2 μm/s and 38.2 pN, respectively, for a device with a 497.3-nm thick BHJ layer. The lifetime of the developed device is also explored (~5 hours), which is sufficient for applications of disposable ODEP devices. Therefore, the BHJ polymer may provide a promising candidate for future ODEP devices capable of nanoparticle and cell manipulation.

© 2009 OSA

OCIS Codes
(250.2080) Optoelectronics : Polymer active devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 25, 2009
Revised Manuscript: September 8, 2009
Manuscript Accepted: September 10, 2009
Published: September 17, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Wei Wang, Yen-Heng Lin, Ruei-Syuan Guan, Ten-Chin Wen, Tzung-Fang Guo, and Gwo-Bin Lee, "Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles," Opt. Express 17, 17603-17613 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis 23(16), 2569–2582 (2002). [CrossRef] [PubMed]
  2. J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8(1), 425–454 (2006). [CrossRef] [PubMed]
  3. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and traveling-wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994). [CrossRef]
  4. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997). [CrossRef] [PubMed]
  5. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005). [CrossRef] [PubMed]
  6. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst. 16(3), 491–499 (2007). [CrossRef]
  7. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008). [CrossRef] [PubMed]
  8. Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008). [CrossRef] [PubMed]
  9. Y. H. Lin, C. M. Chang, and G. B. Lee, “Manipulation single DNA molecule by using optically-induced dielectrophoresis,” Opt. Express 17, 15318–15329 (2009). [CrossRef] [PubMed]
  10. Y. H. Lin and G. B. Lee, “An optically-induced cell lysis device using dielectrophoresis,” Appl. Phys. Lett. 94(3), 033901 (2009). [CrossRef]
  11. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells,” Adv. Funct. Mater. 13(1), 85–88 (2003). [CrossRef]
  12. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene,” Appl. Phys. Lett. 86(6), 063502 (2005). [CrossRef]
  13. N. S. Sariciftci, and A. J. Heeger, “Handbook of Organic Conductive Molecules and Polymers,” JOHN WILEY & SONS, New York (1997).
  14. H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science 280(5370), 1741–1744 (1998). [CrossRef] [PubMed]
  15. T. F. Guo, T. C. Wen, G. L. Pakhomov, X. G. Chin, S. H. Liou, P. H. Yeh, and C. H. Yang, “Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells,” Thin Solid Films 516(10), 3138–3142 (2008). [CrossRef]
  16. C. H. Tai, S. K. Hsiung, C. Y. Chen, M. L. Tsai, and G. B. Lee, “Automatic microfluidic platform for cell separation and nucleus collection,” Biomed. Microdevices 9(4), 533–543 (2007). [CrossRef] [PubMed]
  17. T. B. Jones, Electromechanics of particles, (Cambridge University Press, New York, 1995).
  18. H. A. Pohl, Dielectrophoresis, (Cambridge University, Cambridge, UK, 1978).
  19. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett. 75(12), 1679–1681 (1999). [CrossRef]
  20. G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992). [CrossRef]
  21. V. Dyakonov, “Mechanisms controlling the efficiency of polymer solar cells,” Appl. Phys., A Mater. Sci. Process. 79(1), 21–25 (2004). [CrossRef]
  22. C. Y. Li, T. C. Wen, and T. F. Guo, “Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells,” J. Mater. Chem. 18(37), 4478–4482 (2008). [CrossRef]
  23. J. L. Billeter and R. A. Pelcovits, “Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt A), 711–717 (2000). [CrossRef] [PubMed]
  24. D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites,” Nanotechnology 15(9), 1317–1323 (2004). [CrossRef]
  25. G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005). [CrossRef]
  26. W. Y. Lin, Y. H. Lin, and G. B. Lee, “Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces,” Microfluid. Nanofluid. In press., doi:.
  27. T. Tiedje, C. R. Wronski, B. Abeles, and J. M. Cebulka, “Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance,” Solar Cells 2(3), 301–318 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited