OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17614–17629

Design of Fabry-Perot filters in planar waveguides with deep-etched features for spatial switching

Michaël Ménard and Andrew G. Kirk  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17614-17629 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scalable optical space switches compatible with high bit rates which can be reconfigured on-the-fly are needed to increase the flexibility of optical networks. We present the design of integrated Fabry-Perot filters working at oblique incidence, which can be used to build optical space switches. A comprehensive planar waveguide optimization was conducted to minimize radiation losses in the deep-etch features forming the filter mirrors. Four high order cavities were coupled to create a 200 GHz comb wavelength response with passbands larger than 50 GHz and extinction ratio greater than 20 dB over the entire C-band. Gaussian beam propagation analysis showed that the minimum beam waist required to avoid distortion increases rapidly with incident angle.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7390) Optical devices : Waveguides, planar
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: June 19, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: September 8, 2009
Published: September 17, 2009

Michaël Ménard and Andrew G. Kirk, "Design of Fabry-Perot filters in planar waveguides with deep-etched features for spatial switching," Opt. Express 17, 17614-17629 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Fabry and A. Perot, “Sur les franges des lames minces argentées et leur application à la mesure de petites épaisseurs d'air,” Ann. Chem. Phys. 12, 459–501 (1897).
  2. M. Xiaohua and K. Geng-Sheng, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41, S16–S23 (2003).
  3. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007). [CrossRef] [PubMed]
  4. L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimensioning of agile all-photonic networks,” Comput. Netw. 50(2), 268–287 (2006). [CrossRef]
  5. B. P. Keyworth, “ROADM subsystems and technologies,” in Optical Fiber Communication Conference,2005. Technical Digest. OFC/NFOEC. vol. 3 (Institute of Electrical and Electronics Engineers, New York, 2005), p. 4.
  6. T. S. A. El-Bawab, Optical switching, (Springer, 2006).
  7. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,” Appl. Phys. Lett. 76(5), 532–534 (2000). [CrossRef]
  8. S. Blair and J. Goeckeritz, “Effect of vertical mode matching on defect resonances in one-dimensional photonic crystal slabs,” J. Lightwave Technol. 24(3), 1456–1461 (2006). [CrossRef]
  9. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, “Out-of-plane scattering in photonic crystal slabs,” IEEE Photon. Technol. Lett. 13(6), 565–567 (2001). [CrossRef]
  10. G. W. Burr, S. Diziain, and M. P. Bernal, “The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals,” Opt. Express 16(9), 6302–6316 (2008). [CrossRef] [PubMed]
  11. R. Ferrini, A. Berrier, L. A. Dunbar, R. Houdre, M. Mulot, S. Anand, S. de Rossi, and A. Talneau, “Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide,” Appl. Phys. Lett. 85(18), 3998–4000 (2004). [CrossRef]
  12. G. R. Hadley, “Out-of-plane losses of line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 14(5), 642–644 (2002). [CrossRef]
  13. S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “12 mu m long edge-emitting quantum-dot laser,” Electron. Lett. 37(11), 690–691 (2001). [CrossRef]
  14. K. J. Kasunic, “Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings,” J. Lightwave Technol. 18(3), 425–429 (2000). [CrossRef]
  15. T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. De Angelis, C. R. Stanley, H. M. van Driel, and J. S. Aitchison, “Design, fabrication, and characterization of deep-etched waveguide gratings,” J. Lightwave Technol. 23(11), 3832–3842 (2005). [CrossRef]
  16. T. Kotani, Y. Hatada, M. Funato, Y. Narukawa, T. Mukai, Y. Kawakami, and S. Fujita, “Fabrication and characterization of GaN-based distributed Bragg reflector mirrors for low lasing threshold and integrated photonics,” Phys Status Solidi C 2(7), 2895–2898 (2005). [CrossRef]
  17. M. V. Kotlyar, L. O'Faolain, A. B. Krysa, and T. F. Krauss, “Electrooptic tuning of InP-based microphotonic Fabry-Perot filters,” J. Lightwave Technol. 23(6), 2169–2174 (2005). [CrossRef]
  18. C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79(25), 4076–4078 (2001). [CrossRef]
  19. P. Modh, N. Eriksson, M. Q. Teixeiro, A. Larsson, and T. Suhara, “Deep-etched distributed Bragg reflector lasers with curved mirrors-experiments and modeling,” IEEE J. Quantum Electron. 37(6), 752–761 (2001). [CrossRef]
  20. H. K. Tsang, M. W. K. Mak, L. Y. Chan, J. B. D. Soole, C. Youtsey, and I. Adesida, “Etched cavity InGaAsP/InP waveguide Fabry-Perot filter tunable by current injection,” J. Lightwave Technol. 17(10), 1890–1895 (1999). [CrossRef]
  21. G. R. Zhou, X. Li, and N. N. Feng, “Design of deeply etched antireflective waveguide terminators,” IEEE J. Quantum Electron. 39(2), 384–391 (2003). [CrossRef]
  22. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001). [CrossRef]
  23. C. Ciminelli, F. Peluso, and M. N. Armenise, “2D guided-wave photonic band gap single and multiple cavity filters,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (Institute of Electrical and Electronics Engineers, New York, 2005) pp. 404–409.
  24. H. A. Macleod, Thin-film optical filter, 3rd ed. (Institute of Physics Publishing, 2001).
  25. H. Vandestadt and J. M. Muller, “Multimirror Fabry-Perot Interferometers,” J. Opt. Soc. Am. A 2(8), 1363–1370 (1985). [CrossRef]
  26. E. Hecht, Optics 4th ed. (Addison-Wesley, 2002).
  27. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  28. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis: a signal processing approach. (Wiley, 1999).
  29. M. Ménard, and A. G. Kirk, “Broadband Integrated Fabry-Perot Electro-Optic Switch,” in International Conference on Photonics in Switching, 2008, (Institute of Electrical and Electronics Engineers, New York, 2008).
  30. K. D. Hendrix and C. K. Carniglia, “Path of a beam of light through an optical coating,” Appl. Opt. 45(11), 2410–2421 (2006). [CrossRef] [PubMed]
  31. R. E. Klinger, C. A. Hulse, C. K. Carniglia, and R. B. Sargent, “Beam displacement and distortion effects in narrowband optical thin-film filters,” Appl. Opt. 45(14), 3237–3242 (2006). [CrossRef] [PubMed]
  32. T. Tamir, “Nonspecular Phenomena in Beam Fields Reflected by Multilayered Media,” J. Opt. Soc. Am. A 3(4), 558–565 (1986). [CrossRef]
  33. T. Tamir and H. L. Bertoni, “Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,” J. Opt. Soc. Am. 61(10), 1397–1413 (1971). [CrossRef]
  34. I. J. Hodgkinson, and Q. h. Wu, Birefringent thin films and polarizing elements. (World Scientific, 1997).
  35. M. Ménard and A. G. Kirk, “Integrated Fabry-Perot Comb Switches: Transmission Experiments and Scalability.” in Proceedings of The 22nd Annual Meeting of the IEEE Photonics Society (Institute of Electrical and Electronics Engineers, New York, 2009), (to be published)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited