OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17645–17651

Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics

S. J. Madden and K. T. Vu  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17645-17651 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication and optical properties of the first very low loss nonlinear Tellurite planar rib waveguides ever demonstrated. A new reactive ion etch process based on Hydrogen as the active species was developed to accomplish the low propagation losses. Optical losses below ~0.05dB/cm in most of the NIR spectrum and ~0.10dB/cm at 1550nm have been achieved - the lowest ever reported by more than an order of magnitude and clearly suitable for planar integrated devices. We demonstrate strong spectral broadening of 0.6ps pulses in waveguides fabricated from pure TeO2, in good agreement with simulations.

© 2009 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 23, 2009
Revised Manuscript: September 8, 2009
Manuscript Accepted: September 9, 2009
Published: September 17, 2009

S. J. Madden and K. T. Vu, "Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics," Opt. Express 17, 17645-17651 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. H. El-Mallawany, Tellurite Glasses Handbook: physical properties and data (CRC Press, 2002).
  2. S.-H. Kim, T. Yoko, and S. Sakka, “Nonlinear Optical Properties of TeO2-Based Glasses: MOx-TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) Binary Glasses,” J. Am. Ceram. Soc. 76, 2486 (1993). [CrossRef]
  3. D. A. Gaponov and A. S. Biryukov, “Optical properties of microstructure tellurite glass fibres,” Quantum Electron. 36(4), 343–348 (2006). [CrossRef]
  4. G. Ghosh, “Sellmeier coefficients and chromatic dispersions for some tellurite glasses,” J. Am. Ceram. Soc. 78(10), 2828–2830 (1995). [CrossRef]
  5. R. Jose and Y. Ohishi, “Enhanced Raman gain coefficients and bandwidths in P2O5 and WO added tellurite glasses for Raman gain media,” Appl. Phys. Lett. 89(12), 221122 (2006). [CrossRef]
  6. G. S. Murugan, T. Suzuki, and Y. Ohishi, “Phospho-tellurite glasses containing heavy metal oxides for ultrabroad band fiber Raman amplifiers,” Appl. Phys. Lett. 86(22), 221109 (2005). [CrossRef]
  7. R. Jose and Y. Ohishi, “Ultra-broadband Raman gain media for photonics device applications,” International Society for Optical Engineering, Bellingham WA, WA 98227–0010,San Jose, CA, 64690 (2007).
  8. R. Jose and Y. Ohishi, “Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2 -ZnO- Nb2O5 -MoO3 quaternary glass system,” Appl. Phys. Lett. 90(21), 221104 (2007). [CrossRef]
  9. R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, and J. C. Champarnaud-Mesjard, “Raman gain measurements of thallium-tellurium oxide glasses,” Opt. Express 13(4), 1144–1149 (2005). [CrossRef] [PubMed]
  10. L. Kassab, R. Pinto, R. Kobayashi, M. Piasecki, P. Bragiel, and I. Kityk, “Photoinduced second-order optical susceptibilities of Er2O3 doped TeO2–GeO2–PbO glasses,” Opt. Commun. 274(2), 461–465 (2007). [CrossRef]
  11. A. Jha, S. Shaoxiong, H. Li Hui, and P. Joshi, “Spectroscopic properties of rare earth metal ion doped tellurium oxide glasses and fibres,” J. Opt. 33, 157 (2004).
  12. E. B. Intyushin and V. A. Novikov, “Tungsten-tellurite glasses and thin films doped with rare-earth elements produced by radio frequency magnetron deposition,” Thin Solid Films 516(12), 4194–4200 (2008). [CrossRef]
  13. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-flattened tellurite based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998). [CrossRef]
  14. S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002). [CrossRef]
  15. S. Shen, M. Naftaly, and A. Jha, “Tm- and Er-doped tellurite glass fiber for a broadband amplifier at 1450-1600nm”, Proc. SPIE, 3849, Paper 3849–12, (1999).
  16. A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, “Ultra-Wideband tellurite based Raman fibre amplifier,” Electron. Lett. 37(24), 1442–1443 (2001). [CrossRef]
  17. S. Man, E. Pun, and P. Chung, “Tellurite glass for 1.3μm optical amplifiers,” Opt. Commun. 168(5-6), 369–373 (1999). [CrossRef]
  18. H. Bookey, K. Bindra, A. Kar, and B. Wherrett, “Telluride glass fibres for all optical switching: - nonlinear optical properties and fibre characterization,” in Proceedings of the 2002 IEEE/LEOS Workshop on Fibre and Passive Optical Components, 29 – 34 (2002).
  19. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  20. E. Chierici, M. C. Didavide, A. Moro, O. Rossotto, L. Tallone, and E. Monchiero, “Direct writing of channel waveguide on a tellurite glass using a focused ultraviolet laser beam”, IEEE/LEOS Proc. Workshop Fibre Passive Components, 24–28, (2002).
  21. E. Monchiero, D. Milanese, M. Ferraris, L. Tallone, and E. Chierici, “Direct writing of waveguides on tellurite glasses”, ICOXIX: Optics for the Quality of life, Proc. SPIE 4829, 161–162 (2002).
  22. Y. Tokuda, M. Saito, M. Takahashi, K. Yamada, W. Watanabe, K. Itoh, and T. Yoko, “Waveguide formation in niobium tellurite glass by pico and femtosecond laser pulses,” J. Non-Cryst. Solids 326, 472–475 (2003). [CrossRef]
  23. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, and D. Mathur, “Femtosecond laser written channel waveguides in tellurite glass,” Opt. Express 14(25), 12145–12150 (2006). [CrossRef] [PubMed]
  24. T. T. Fernandez, G. D. Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008). [CrossRef] [PubMed]
  25. G. N. Conti, V. K. Tikhomirov, M. Bettinelli, S. Berneschi, M. Brenci, B. Chen, S. Pelli, A. Speghini, A. B. Seddon, and G. C. Righini, “Characterization of ion-exchanged waveguides in tungsten tellurite and zinc tellurite Er3+ doped glasses,” Opt. Eng. 42(10), 2805–2811 (2003). [CrossRef]
  26. G. N. Conti, S. Berneschi, M. Bettinelli, M. Brenci, B. Chen, S. Pelli, A. Speghini, and G. Righini, “Rare-earth doped tungsten tellurite glasses and waveguides: fabrication and characterization,” J. Non-Cryst. Solids 345, 343–348 (2004). [CrossRef]
  27. Y. Ding, S. Jiang, T. Luo, Y. Hu, and N. Peyghambarian, “Optical waveguides prepared in Er3+doped tellurite glass by Ag+-Na+ ion-exchange,” Proc. SPIE 4282, 23–30 (2001). [CrossRef]
  28. S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, I. Bányász, A. Watterich, N. Khanh, M. Fried, and F. Pászti, “Channel waveguide fabrication in Er3+ doped tellurite glass by ion beam irradiation”, Proc. SPIE, 6475, 647509–1 – 647509–6, (2007).
  29. S. M. Pietralunga, M. Lanata, M. Ferè, D. Piccinin, G. Cusmai, M. Torregiani, and M. Martinelli, “High-contrast waveguides in sputtered pure TeO2 glass thin films,” Opt. Express 16(26), 21662–21670 (2008). [CrossRef] [PubMed]
  30. R. Nayak, V. Gupta, A. L. Dawar, and K. Sreenivas, “Optical waveguiding in amorphous tellurium oxide thin films,” Thin Solid Films 445(1), 118–126 (2003). [CrossRef]
  31. R. H. Clarke, “Theory of reflection from antireflection coatings,” Bell Syst. Tech. J. 62, 2885–2891 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited