OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17652–17657

Ultrafast modulation of optical metamaterials

David J. Cho, Wei Wu, Ekaterina Ponizovskaya, Pratik Chaturvedi, Alexander M. Bratkovsky, Shih-Yuan Wang, Xiang Zhang, Feng Wang, and Y. Ron Shen  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17652-17657 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show by pump-probe spectroscopy that the optical response of a fishnet metamaterial can be modulated on the femtosecond time scale. The modulation dynamics is dominated by pump-induced changes in the constituting dielectric medium, but the strength of modulation is dramatically enhanced through the plasmon resonance. The pump-induced spectral responses of the metamaterial provide understanding on how the resonance is modified by pump excitation. Our study suggests that metamaterials can be used as high-speed amplitude/phase modulators with terahertz-bandwidth.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(240.6380) Optics at surfaces : Spectroscopy, modulation

ToC Category:

Original Manuscript: August 13, 2009
Revised Manuscript: September 12, 2009
Manuscript Accepted: September 13, 2009
Published: September 17, 2009

David J. Cho, Wei Wu, Ekaterina Ponizovskaya, Pratik Chaturvedi, Alexander M. Bratkovsky, Shih-Yuan Wang, Xiang Zhang, Feng Wang, and Y. Ron Shen, "Ultrafast modulation of optical metamaterials," Opt. Express 17, 17652-17657 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  5. E. Kim, Y. R. Shen, W. Wu, E. Ponizovskaya, Z. Yu, A. M. Bratkovsky, S. Y. Wang, and R. S. Williams, “Modulation of negative index metamaterials in the near-IR range,” Appl. Phys. Lett. 91, 3 (2007).
  6. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  7. S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13(13), 4922–4930 (2005). [CrossRef] [PubMed]
  8. W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007). [CrossRef]
  9. A. Taflove and S. Hagness, Comupational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  10. W. Wu, E. Ponizovskaya, E. Kim, D. Cho, A. Bratkovsky, Z. N. Yu, Q. F. Xia, X. M. Li, Y. R. Shen, S. Y. Wang, and R. S. Williams, “Geometrical dependence of optical negative index meta-materials at 1.55 mu,” Appl. Phys., A Mater. Sci. Process. 95(4), 1119–1122 (2009). [CrossRef]
  11. M. Born and E. Wolf, Principle of Optics (Cambridge University Press, 1999).
  12. A. V. Kildishev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23(3), 423–433 (2006). [CrossRef]
  13. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  14. D. J. Cho, F. Wang, X. Zhang, and Y. R. Shen, “Contribution of the electric quadrupole resonance in optical metamaterials,” Phys. Rev. B 78(12), 121101 (2008). [CrossRef]
  15. A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast Recombination and Trapping in Amorphous-Silicon,” Phys. Rev. B 41(5), 2879–2884 (1990). [CrossRef]
  16. E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier Lifetime Versus Anneal in Low-Temperature Growth Gaas,” Appl. Phys. Lett. 63(16), 2248–2250 (1993). [CrossRef]
  17. C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevicius, “Ultrafast carrier trapping and recombination in highly resistive ion implanted InP,” J. Appl. Phys. 94(2), 1074–1078 (2003). [CrossRef]
  18. M. Kubinyi, A. Grofcsik, and W. J. Jones, “Laser spectroscopic study of photoinduced picosecond processes in amorphous and polycrystalline silicon films,” (Elsevier Science Bv, 1997), pp. 121–124.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited