OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17658–17668

Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing

Yannis Benlachtar, Philip M. Watts, Rachid Bouziane, Peter Milder, Deepak Rangaraj, Anthony Cartolano, Robert Koutsoyannis, James C. Hoe, Markus Püschel, Madeleine Glick, and Robert I. Killey  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17658-17668 (2009)
http://dx.doi.org/10.1364/OE.17.017658


View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a field programmable gate array (FPGA) based optical orthogonal frequency division multiplexing (OFDM) transmitter implementing real time digital signal processing at a sample rate of 21.4 GS/s. The QPSK-OFDM signal is generated using an 8 bit, 128 point inverse fast Fourier transform (IFFT) core, performing one transform per clock cycle at a clock speed of 167.2 MHz and can be deployed with either a direct-detection or a coherent receiver. The hardware design and the main digital signal processing functions are described, and we show that the main performance limitation is due to the low (4-bit) resolution of the digital-to-analog converter (DAC) and the 8-bit resolution of the IFFT core used. We analyze the back-to-back performance of the transmitter generating an 8.36 Gb/s optical single sideband (SSB) OFDM signal using digital up-conversion, suitable for direct-detection. Additionally, we use the device to transmit 8.36 Gb/s SSB OFDM signals over 200 km of uncompensated standard single mode fiber achieving an overall BER<10−3.

© 2009 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 15, 2009
Revised Manuscript: August 26, 2009
Manuscript Accepted: September 16, 2009
Published: September 18, 2009

Citation
Yannis Benlachtar, Philip M. Watts, Rachid Bouziane, Peter Milder, Deepak Rangaraj, Anthony Cartolano, Robert Koutsoyannis, James C. Hoe, Markus Püschel, Madeleine Glick, and Robert I. Killey, "Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing," Opt. Express 17, 17658-17668 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Jansen, I. Morita, K. Forozesh, S. Randel, D. van den Borne, and H. Tanaka, ‘Optical OFDM, a hype or is it for real?’, in Proc. Europ. Conference on Optical Comm. (ECOC), paper Mo.3.E.3 (2008)
  2. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6378 . [CrossRef] [PubMed]
  3. S. L. Jansen, A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “132.2-Gb/s PDM-8QAM-OFDM transmission at 4-b/s/Hz spectral efficiency,” Photon. Technol. Lett. 21(12), 802–804 (2009). [CrossRef]
  4. A. J. Lowery, L. B. Du, and J. Armstrong,“Armstrong, ‘Performance of optical OFDM in ultralong-haul WDM lightwave systems’,” J. Lightwave Technol. 25(1), 131–138 (2007). [CrossRef]
  5. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008). [CrossRef]
  6. Y. Benlachtar, G. Gavioli, V. Mikhailov, and R. I. Killey, “Experimental investigation of SPM in long-haul direct-detection OFDM systems,” Opt. Express 16(20), 15477–15482 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15477 . [CrossRef] [PubMed]
  7. Y. Benlachtar, R.I. Killey,'Investigation of 11.1Gbit/s direct-detection OFDM QAM-16 transmission over 1600km of uncompensated fiber', in Proc. Optical Fiber Comm. (OFC), paper OWM5 (2009).
  8. B. J. C. Schmidt, Z. Zan, L. B. Du, A.J. Lowery, ‘100Gbit/s transmission using single-band direct-detection optical OFDM’, in Proc. Optical Fiber Comm.(OFC), paper PDPC3 (2009).
  9. D. Qian, N. Cvijetic, J. Hu, T. Wang, ‘108 Gb/s OFDMA-PON with polarization multiplexing and direct-detection’, in Proc. Optical Fiber Comm.(OFC), paper PDPD5 (2009).
  10. H. Yang, S. C. J. Lee, E. Tangdiongga, F. Breyer, S. Randel, A. M. J. Koonen, ‘40 Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation’, in Proc. Optical Fiber Comm.(OFC), paper PDPD8 (2009).
  11. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006). [CrossRef]
  12. Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Opt. Express 17(10), 7985–7992 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-7985 . [CrossRef] [PubMed]
  13. B. J. C. Schmidt, A. J. Lowery, L. B. Du, 'Low sample rate transmitter for direct-detection optical OFDM', in Proc. Optical Fiber Comm.(OFC), paper OWM4 (2009).
  14. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009). [CrossRef]
  15. P. M. Watts, R. Waegemans, Y. Benlachtar, V. Mikhailov, P. Bayvel, and R. I. Killey, “10.7 Gb/s transmission over 1200 km of standard single-mode fiber by electronic predistortion using FPGA-based real-time digital signal processing,” Opt. Express 16(16), 12171–12180 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12171 . [CrossRef] [PubMed]
  16. P. Watts, R. Waegemans, M. Glick, P. Bayvel, and R. Killey, “An FPGA-based optical transmitter design using real-time DSP for advanced signal formats and electronic predistortion,” J. Lightwave Technol. 25(10), 3089–3099 (2007). [CrossRef]
  17. P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, ‘Formal datapath representation and manipulation for implementing DSP transforms’, in Proc. Design Automation Conference (DAC), 385–390 (2008)
  18. G. Nordin, P. A. Milder, J. C. Hoe, and M. Püschel, ‘Automatic generation of customized discrete Fourier transform IPs’ in Proc. Design Automation Conference (DAC), 471–474 (2005)
  19. R.A. Shafik, S. Rahman, A.H.M. Razibul Islam, 'On the extended relationships among EVM, BER and SNR as performance metrics', in Proc. Int. Conf. on Elec. and Computer Eng.(ICECE), 408 - 411 (2006).
  20. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2079 . [CrossRef] [PubMed]
  21. H. Ochiai and H. Imai, “Performance analysis of deliberately clipped OFDM signals,” IEEE Trans. Commun. 50(1), 89–101 (2002). [CrossRef]
  22. R. Waegemans, S. Herbst, L. Holbein, P. Watts, P. Bayvel, C. Fürst, and R. I. Killey, “10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A converters implementing real-time DSP for chromatic dispersion and SPM compensation,” Opt. Express 17(10), 8630–8640 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8630 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited