OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17715–17722

A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors

Zhaoliang Cao, Quanquan Mu, Lifa Hu, Xinghai Lu, and Li Xuan  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17715-17722 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors (DLCWFCs) for atmospheric turbulence correction is reported. A simple formula which describes the relationship between pixel number, DLCWFC aperture, quantization level, and atmospheric coherence length was derived based on the calculated atmospheric turbulence wavefronts using Kolmogorov atmospheric turbulence theory. It was found that the pixel number across the DLCWFC aperture is a linear function of the telescope aperture and the quantization level, and it is an exponential function of the atmosphere coherence length. These results are useful for people using DLCWFCs in atmospheric turbulence correction for large-aperture telescopes.

© 2009 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Adaptive Optics

Original Manuscript: July 22, 2009
Revised Manuscript: August 28, 2009
Manuscript Accepted: September 10, 2009
Published: September 18, 2009

Zhaoliang Cao, Quanquan Mu, Lifa Hu, Xinghai Lu, and Li Xuan, "A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors," Opt. Express 17, 17715-17722 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6(1), 2–6 (2000). [CrossRef] [PubMed]
  2. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997). [CrossRef] [PubMed]
  3. Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16(10), 7006–7013 (2008). [CrossRef] [PubMed]
  4. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, “Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites,” Opt. Express 10(25), 1508–1519 (2002). [PubMed]
  5. R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Am. 67(3), 393–395 (1977). [CrossRef]
  6. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999), pp. 13–15.
  7. R. K. Tyson, Principles of adaptive optics (Second Edition Academic Press 1997), pp.71.
  8. G. D. Love, “Liquid crystal adaptive optics,” in: Adaptive optics engineering handbook (R. K. Tyson, CRC, 1999)
  9. Z. Cao, L. Xuan, L. Hu, Y. Liu, and Q. Mu, “Effects of the space-bandwidth product on the liquid-crystal kinoform,” Opt. Express 13(14), 5186–5191 (2005). [CrossRef] [PubMed]
  10. L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997). [CrossRef] [PubMed]
  11. Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, and D. Li, “Investigation of optical testing with a phase-only liquid crystal spatial light modulator,” Opt. Express 13(4), 1059–1065 (2005). [CrossRef] [PubMed]
  12. Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, “Correction for large aberration with phase-only liquid-crystal wavefront corrector,” Opt. Eng. 45(12), 128001 (2006). [CrossRef]
  13. Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “Diffractive characteristics of the liquid crystal spatial light modulator,” Chin. Phys. 16(6), 1665–1671 (2007). [CrossRef]
  14. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976). [CrossRef]
  15. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29(10), 1174–1180 (1990). [CrossRef]
  16. M. Loktev, G. Vdovin, N. Klimov, and S. Kotova, “Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material,” Opt. Express 15(6), 2770–2778 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited