OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17792–17800

Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide

Tadashi Nishikawa, Akira Ozawa, Yoshiki Nishida, Masaki Asobe, Feng-Lei Hong, and Theodor W. Hänsch  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17792-17800 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A solid-state-laser based single-frequency 589 nm light source that can be easily used in the laboratory is needed for sodium spectroscopy studies and cold sodium atom experiments. This paper shows that by using a periodically poled Zn-doped LiNbO3 ridge waveguide for sum-frequency generation, we can obtain a high conversion efficiency to 589 nm light from two sub-watt 1064 and 1319 nm Nd:YAG lasers via a simple single pass wavelength conversion process without employing an enhancement cavity. A 494 mW light at 589 nm is generated and achieves overall conversion efficiency from the laser power of 41%. Excellent long-term stability of output power is obtained and its standard deviation is characterized to be 0.09%.

© 2009 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.2620) Nonlinear optics : Harmonic generation and mixing
(130.7405) Integrated optics : Wavelength conversion devices
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: July 30, 2009
Revised Manuscript: September 11, 2009
Manuscript Accepted: September 11, 2009
Published: September 18, 2009

Tadashi Nishikawa, Akira Ozawa, Yoshiki Nishida, Masaki Asobe, Feng-Lei Hong, and Theodor W. Hänsch, "Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide," Opt. Express 17, 17792-17800 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Moosmüller and J. D. Vance, “Sum-frequency generation of continuous-wave sodium D(2) resonance radiation,” Opt. Lett. 22(15), 1135–1137 (1997). [CrossRef] [PubMed]
  2. J. D. Vance, C.-Y. She, and H. Moosmüller, “Continuous-wave, all-solid-state, single-frequency 400-mw source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37(21), 4891–4896 (1998). [CrossRef]
  3. J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,” Opt. Lett. 28(22), 2219–2221 (2003). [CrossRef] [PubMed]
  4. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589 nm Light Source Based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004). [CrossRef]
  5. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005). [CrossRef] [PubMed]
  6. N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami, M. Iye, and S. Wada, “Coherent 589-nm-light Generation by Quasi-Intracavity Sum-Frequency Mixing,” Jpn. J. Appl. Phys. 44(47), L1420–L1422 (2005). [CrossRef]
  7. J. W. Dawson, A. D. Drobshoff, R. J. Beach, M. J. Messerly, S. A. Payne, A. Brown, D. M. Pennington, D. J. Bamford, S. J. Sharpe, and D. J. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F1–61021F9 (2006).
  8. E. Mimoun, L. De Sarlo, J.-J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16(23), 18684–18691 (2008). [CrossRef]
  9. J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, “Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate,” Opt. Lett. 34(7), 1093–1095 (2009). [CrossRef] [PubMed]
  10. L. Taylor, A. Friedenauer, V. Protopopov, Y. Feng, D. B. Calia, V. Karpov, W. Hackenberg, R. Holzlöhner, W. Clements, M. Hager, F. Lison, and W. Kaenders, “20 W at 589 nm via frequency doubling of coherently beam combined 2-MHz 1178-nm CW signals amplified in Raman PM Fiber Amplifiers,” in The European Conference on Lasers and Electro-Optics and The European Quantum Electronics Conference, Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2009), paper PDA.7.
  11. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003). [CrossRef]
  12. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001). [CrossRef]
  13. W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70(15), 2253–2256 (1993). [CrossRef] [PubMed]
  14. R. Wynands, O. Coste, C. Rembe, and D. Meschede, “How accurate is optical second-harmonic generation?” Opt. Lett. 20(10), 1095 (1995). [CrossRef] [PubMed]
  15. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, and A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17(3), 1652–1659 (2009). [CrossRef] [PubMed]
  16. M. Asobe, O. Tadanaga, T. Yanagawa, T. Umeki, Y. Nishida, and H. Suzuki, “High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNbO3 waveguide,” Electron. Lett. 44(4), 288–289 (2008). [CrossRef]
  17. NTT. Electronics, http://www.nel-world.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited