OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17818–17828

Large tuning of birefringence in two strip silicon waveguides via optomechanical motion

Jing Ma and Michelle L. Povinelli  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17818-17828 (2009)
http://dx.doi.org/10.1364/OE.17.017818


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optomechanical method to tune phase and group birefringence in parallel silicon strip waveguides. We first calculate the deformation of suspended, parallel strip waveguides due to optical forces. We optimize the frequency and polarization of the pump light to obtain a 9nm deformation for an optical power of 20mW. Widely tunable phase and group birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion within 30µm for a pump power of 67mW. The group birefringence gives a tunable differential group delay of 6fs between orthogonal polarizations. We also evaluate the tuning performance of waveguides with different cross sections.

© 2009 OSA

ToC Category:
Integrated Optics

History
Original Manuscript: July 7, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: September 8, 2009
Published: September 21, 2009

Citation
Jing Ma and Michelle L. Povinelli, "Large tuning of birefringence in two strip silicon waveguides via optomechanical motion," Opt. Express 17, 17818-17828 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  2. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85(9), 1466–1468 (2004). [CrossRef]
  3. F. Riboli, A. Recati, M. Antezza, and I. Carusotto, “Radiation induced force between two planar waveguides,” Eur. Phys. J. D 46(1), 157–164 (2008). [CrossRef]
  4. M. L. Povinelli, “Microphotonics: Under pressure (News and Views),” Nat. Photonics 1(7), 370–371 (2007). [CrossRef]
  5. M. L. Povinelli, S. G. Johnson, M. Lonèar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005). [CrossRef] [PubMed]
  6. J. Ng, C. T. Chan, P. Sheng, and Z. Lin, “Strong optical force induced by morphology-dependent resonances,” Opt. Lett. 30(15), 1956–1958 (2005). [CrossRef] [PubMed]
  7. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007). [CrossRef]
  8. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78(16), 165129 (2008). [CrossRef]
  9. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1(7), 416–422 (2007). [CrossRef]
  10. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  11. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009). [CrossRef] [PubMed]
  12. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  13. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Arxiv 0904.0794v1.
  14. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009). [CrossRef] [PubMed]
  15. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  16. S. H. Yang, M. L. Cooper, P. R. Bandaru, and S. Mookherjea, “Giant birefringence in multi-slotted silicon nanophotonic waveguides,” Opt. Express 16(11), 8306–8316 (2008). [CrossRef] [PubMed]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002). [CrossRef]
  18. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002). [PubMed]
  19. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. N. Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007). [CrossRef]
  20. K. K. Tsia, S. Fathpour, and B. Jalali, “Electrical tuning of birefringence in silicon waveguides,” Appl. Phys. Lett. 92(6), 061109 (2008). [CrossRef]
  21. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009). [CrossRef] [PubMed]
  22. COMSOL is a multiphysics software package for performing finite-element-method (FEM) simulations. See http://www.comsol.com/ .
  23. M. I. T. Photonic Bands, (MPB) is a free software package for the solution of the electromagnetic eigenmodes of periodic structures. MPB has been developed at MIT, http://ab-initio.mit.edu/wiki/index.php/MPB .
  24. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  25. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  26. J. D. Jackson, Classical Electromagnetics, 3rd edition, (John Wiley & Sons, New York, 1999).
  27. V. A. Parsegian, Van der Waals Forces, (Cambridge University Press, Cambridge, 2005).
  28. A. H. Rose, N. Feat, and S. M. Etzel, “Wavelength and temperature performance of polarization-transforming fiber,” Appl. Opt. 42(34), 6897–6904 (2003). [CrossRef] [PubMed]
  29. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005). [CrossRef] [PubMed]
  30. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded rib waveguides,” Appl. Phys. Lett. 59(11), 1278–1280 (1991). [CrossRef]
  31. J. J. G. M. van der Tol, F. Hakimzadeh, J. W. Pedersen, D. Li, and H. van Brug, “New short and low-loss passive polarization converter on InP,” IEEE Photon. Technol. Lett. 7(1), 32–34 (1995). [CrossRef]
  32. K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Express 17(9), 7145–7158 (2009). [CrossRef] [PubMed]
  33. C. Fietz and G. Shvets, “Nonlinear polarization conversion using microring resonators,” Opt. Lett. 32(12), 1683–1685 (2007). [CrossRef] [PubMed]
  34. R. Manning, A. Antonopoulos, R. L. Roux, and A. Kelly, “Experimental measurement of nonlinear polarisation rotation insemiconductor optical amplifiers,” Electron. Lett. 37(4), 229–231 (2001). [CrossRef]
  35. H. Soto, D. Erasme, and G. Guekos, “Cross-polarization modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 11(8), 970–972 (1999). [CrossRef]
  36. R. W. Boyd, Nonlinear Optics, (2nd edition, Academic Press, Boston, 2003).
  37. “Tables and graphs of the complex index of refraction for common microfabrication materials,” http://www.ee.byu.edu/photonics/tabulatedopticalconstants.phtml
  38. C. Fietz and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007). [CrossRef] [PubMed]
  39. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007). [CrossRef] [PubMed]
  40. F. Morichetti, C. Ferrari, A. Melloni, and M. Martinelli, “Polarization-Selective Tunable Delay in Coupled-Resonator Optical Delay-Lines,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper IWG1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited