OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17829–17836

Propagation of vector vortex beams through a turbulent atmosphere

Wen Cheng, Joseph W. Haus, and Qiwen Zhan  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17829-17836 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically study the propagation properties of vector vortex beams through a turbulent atmosphere. The irradiance pattern, degree of polarization, and scintillation index of radially polarized beam are computed for different propagation distances in an atmosphere with weak and strong turbulences. Corresponding properties of a fundamental Gaussian beam and a scalar vortex beam with topological charge of + 1 propagating through the same atmospheric turbulence conditions are calculated for comparison. With the same initial intensity profile, the vector vortex beam shows substantially lower scintillation than the scalar vortex. The existence of the vectorial vortex can be identified with longer propagation distance than the scalar vortex even with vanishing characteristic vortex structure in the irradiance images. This indicates the potential advantages of using a vector vortex beam to mitigate atmospheric effects and enable a more robust free space communication channel with longer link distance.

© 2009 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(260.5430) Physical optics : Polarization
(060.2605) Fiber optics and optical communications : Free-space optical communication
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 22, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: September 15, 2009
Published: September 21, 2009

Wen Cheng, Joseph W. Haus, and Qiwen Zhan, "Propagation of vector vortex beams through a turbulent atmosphere," Opt. Express 17, 17829-17836 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Andrews, and R. L. Phillips, Laser beam propagation through random media, (SPIE Press, Bellingham, Washington, 1998).
  2. H. T. Eyyuboglu, C. Arpali, and Y. K. Baykal, “Flat topped beams and their characteristics in turbulent media,” Opt. Express 14(10), 4196–4207 (2006). [CrossRef] [PubMed]
  3. H. T. Eyyuboglu, “Propagation of higher order Bessel-Gaussian beams in turbulence,” Appl. Phys. B 88(2), 259–265 (2007). [CrossRef]
  4. Y. Cai, “Propagation of various flat-topped beams in a turbulent atmosphere,” J. Opt. A, Pure Appl. Opt. 8(6), 537–545 (2006). [CrossRef]
  5. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117–0411173 (2006). [CrossRef]
  6. H. T. Eyyuboglu, Y. Baykal, and E. Sermutlu, “Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere,” Opt. Commun. 265(2), 399–405 (2006). [CrossRef]
  7. Y. Cai and S. He, “Average intensity and spreading of an elliptical gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31(5), 568–570 (2006). [CrossRef] [PubMed]
  8. M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008). [CrossRef]
  9. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, and Y. Baykal, “Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere,” Opt. Express 17(13), 11130–11139 (2009). [CrossRef] [PubMed]
  10. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  11. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005). [CrossRef] [PubMed]
  12. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” N. J. Phys. 9(9), 328–333 (2007). [CrossRef]
  13. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25(1), 225–229 (2008). [CrossRef]
  14. M. S. Soskin, and M. V. Vasnetsov, Singular Optics, in Progress in Optics (Ed. Emil Wolf), 42, 219–276 (2001).
  15. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009). [CrossRef]
  16. Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008). [CrossRef] [PubMed]
  17. J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27(11), 2111–2126 (1988). [CrossRef] [PubMed]
  18. J. M. Martin and S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7(5), 838–847 (1990). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics, (McGrw-Hill Press, 1996).
  20. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39(30), 5426–5445 (2000). [CrossRef]
  21. L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media 11(3), 271–291 (2001). [CrossRef]
  22. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of scalar and vector vortex beams through turbulent atmosphere,” Proc. SPIE 7200, 720004 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (452 KB)     
» Media 2: MOV (408 KB)     
» Media 3: MOV (422 KB)     
» Media 4: MOV (642 KB)     
» Media 5: MOV (599 KB)     
» Media 6: MOV (627 KB)     
» Media 7: MOV (503 KB)     
» Media 8: MOV (478 KB)     
» Media 9: MOV (498 KB)     
» Media 10: MOV (648 KB)     
» Media 11: MOV (609 KB)     
» Media 12: MOV (613 KB)     
» Media 13: MOV (505 KB)     
» Media 14: MOV (685 KB)     
» Media 15: MOV (717 KB)     
» Media 16: MOV (679 KB)     
» Media 17: MOV (701 KB)     
» Media 18: MOV (833 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited