OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17837–17848

Side-coupled cavity model for surface plasmon-polariton transmission across a groove

John S. Q. Liu, Justin S. White, Shanhui Fan, and Mark L. Brongersma  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17837-17848 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the transmission properties of surface plasmon-polaritons (SPPs) across a rectangular groove in a metallic film can be described by an analytical model that treats the groove as a side-coupled cavity to propagating SPPs on the metal surface. The coupling efficiency to the groove is quantified by treating it as a truncated metal-dielectric-metal (MDM) waveguide. Finite-difference frequency-domain (FDFD) simulations and mode orthogonality relations are employed to derive the basic scattering coefficients that describe the interaction between the relevant modes in the system. The modeled SPP transmission and reflection intensities show excellent agreement with full-field simulations over a wide range of groove dimensions, validating this intuitive model. The model predicts the sharp transmission minima that occur whenever an incident SPP resonantly couples to the groove. We also for the first time show the importance of evanescent, reactive MDM SPP modes to the transmission behavior. SPPs that couple to this mode are resonantly enhanced upon reflection from the bottom of the groove, leading to high field intensities and sharp transmission minima across the groove. The resonant behavior exhibited by the grooves has a number of important device applications, including SPP mirrors, filters, and modulators.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: August 4, 2009
Revised Manuscript: September 13, 2009
Manuscript Accepted: September 14, 2009
Published: September 21, 2009

John S. Q. Liu, Justin S. White, Shanhui Fan, and Mark L. Brongersma, "Side-coupled cavity model for surface plasmon-polariton transmission across a groove," Opt. Express 17, 17837-17848 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  2. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–63 (2007). [CrossRef] [PubMed]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi,“Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. 1988, Berlin: Springer.
  5. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005). [CrossRef]
  6. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007). [CrossRef]
  7. J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005). [CrossRef]
  8. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003). [CrossRef] [PubMed]
  9. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005). [CrossRef]
  10. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23(7), 1608–1615 (2006). [CrossRef]
  11. H. W. Kihm, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92(5), 051115 (2008). [CrossRef]
  12. A. A. Maradudin, R. F. Wallis, and G. I. Stegeman, “Surface polariton reflection and transmission at a barrier,” Solid State Commun. 46(6), 481–485 (1983). [CrossRef]
  13. J. Seidel, S. Grafström, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003). [CrossRef]
  14. J. A. Sánchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60(11), 8359–8367 (1999). [CrossRef]
  15. A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 035129 (2007). [CrossRef]
  16. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009). [CrossRef] [PubMed]
  17. G. Veronis, and S. Fan, Overview of Simulation Techniques for Plasmonic Devices, in Surface Plasmon Nanophotonics, M.L. Brongersma and P.G. Kik, Editors. 2007, Springer. p. 169.
  18. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006). [CrossRef]
  19. Snyder, A.W. and J.D. Love, Optical Waveguide Theory.
  20. B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76(12), 125104–125111 (2007). [CrossRef]
  21. S. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009). [CrossRef]
  22. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  23. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407–035409 (2006). [CrossRef]
  24. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  25. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossyplanar multilayer optical waveguides: reflection pole method andwavevector density method,” J. Lightwave Technol. 17(5), 929–941 (1999). [CrossRef]
  26. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002). [CrossRef]
  27. B. Sturman, E. Podivilov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106–075112 (2008). [CrossRef]
  28. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  29. J. D. Jackson, Classical Electrodynamics. 1999: Wiley.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited