OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17862–17867

Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction

Krishnamoorthy Pandiyan, Yeon Sook Kang, Hwan Hong Lim, Byoung Joo Kim, and Myoungsik Cha  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17862-17867 (2009)
http://dx.doi.org/10.1364/OE.17.017862


View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quasi-phase-matching devices are usually fabricated by electric field poling over photolithographically defined electrode patterns on ferroelectric crystal substrates. For the optimal nonlinear optical performance of such devices, the micro-poled domain structure must ensure good fidelity to the designed grating structure. We present a nondestructive diffraction method to evaluate the quality of periodically poled lithium niobate crystals, by utilizing index modulation caused by the internal field effects. Our proposed method is much simpler than the conventional second-harmonic generation experiment, and provides a fast, low-cost but accurate means for micro-poling quality evaluation.

© 2009 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.3730) Integrated optics : Lithium niobate
(160.2260) Materials : Ferroelectrics
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 14, 2009
Manuscript Accepted: September 15, 2009
Published: September 21, 2009

Citation
Krishnamoorthy Pandiyan, Yeon Sook Kang, Hwan Hong Lim, Byoung Joo Kim, and Myoungsik Cha, "Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction," Opt. Express 17, 17862-17867 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995). [CrossRef]
  3. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75(12), 1673–1675 (1999). [CrossRef]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–437 (1993). [CrossRef]
  5. J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in-situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90(3), 1489–1495 (2001). [CrossRef]
  6. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, “Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography,” Opt. Express 11(4), 392–405 (2003). [CrossRef] [PubMed]
  7. H. Bluhm, A. Wadas, R. Wiesendanger, A. Roshko, J. A. Aust, and D. Nam, “Imaging of domain-inverted gratings in LiNbO3 by electrostatic force microscopy,” Appl. Phys. Lett. 71(1), 146–148 (1997). [CrossRef]
  8. M. J. Jin, O. Y. Jeon, B. J. Kim, and M. Cha, “Fabrication of periodically poled lithium niobate crystal and poling-quality evaluation by diffraction measurement,” J. Korean Phys. Soc. 47, S336–S339 (2005).
  9. F. Gao, J. Xu, B. Yan, J. Yao, B. Fu, Z. Wang, J. Qi, B. Tang, and R. A. Rupp, “Refractive index changes by electrically induced domain reversal in a c-cut slab of LiNbO3,” Appl. Phys. Lett. 87(25), 252905 (2005). [CrossRef]
  10. M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, “Investigation of periodically poled lithium niobate crystals by light diffraction,” J. Appl. Phys. 97(4), 044102 (2005). [CrossRef]
  11. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE, Nonlinear Optical Material and Characterisation, 7197, 71970R (2009).
  12. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,” Appl. Phys. Lett. 72(16), 1981–1983 (1998). [CrossRef]
  13. H. F. Wang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, “Investigation of ferroelectric coercive field in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 65(4-5), 437–438 (1997). [CrossRef]
  14. J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000). [CrossRef]
  15. J. H. Ro, T. H. Kim, J. H. Ro, and M. Cha, “Defect study by sub-second relaxation of the internal field polarization reversal in lithium niobate crystal,” J. Korean Phys. Soc. 40, 488–492 (2002).
  16. T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, “Direct observation of pinning and bowing of a single ferroelectric domain wall,” Phys. Rev. Lett. 82(20), 4106–4109 (1999). [CrossRef]
  17. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (John Wiley & Sons, Inc., Canada, 1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited