OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17874–17887

Classical low-coherence interferometry based on broadband parametric fluorescence and amplification

Julien Le Gouët, Dheera Venkatraman, Franco N. C. Wong, and Jeffrey H. Shapiro  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17874-17887 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that single-mode broadband amplified spontaneous parametric downconversion, combined with optical parametric amplification, can be used as a classical source of phase-sensitive cross-correlated beams. We first study the single spatial mode emission and the spectral brightness properties of the parametric fluorescence, produced in periodically poled MgO-doped lithium niobate. Using the same single-pass bulk-crystal configuration for a pulsed optical parametric amplifier, we achieve a gain of ~20 dB at an average pump power of 2W, and explain the pulse narrowing observed at the output of both parametric fluorescence and amplification in the regime of high gain. Combining these two nonlinear processes, we measured optical coherence tomography signals with standard InGaAs photodiodes, thus realizing the first classical interferometer based on amplified parametric fluorescence. The results suggest their utility for demonstrating phase-conjugate optical coherence tomography.

© 2009 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.5040) Nonlinear optics : Phase conjugation

ToC Category:
Nonlinear Optics

Original Manuscript: June 24, 2009
Revised Manuscript: August 14, 2009
Manuscript Accepted: September 16, 2009
Published: September 22, 2009

Virtual Issues
Vol. 4, Iss. 11 Virtual Journal for Biomedical Optics

Julien Le Gouët, Dheera Venkatraman, Franco N. C. Wong, and Jeffrey H. Shapiro, "Classical low-coherence interferometry based on broadband parametric fluorescence and amplification," Opt. Express 17, 17874-17887 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Louisell, A. Yariv, and A. E. Siegman, "Quantum fluctuations and noise in parametric processes. I.," Phys. Rev. 124, 1646 (1961) [CrossRef]
  2. D. N. Klyshko, "Coherent photon decay in a nonlinear medium," Sov. Phys. JETP Lett. 6, 23 (1967).
  3. S. A. Harris, M. K. Oshman, and R. L. Byer, "Observation of tunable optical parametric fluorescence," Phys. Rev. Lett. 18, 732 (1967). [CrossRef]
  4. D. Magde and H. Mahr, "Study in Ammonium Dihydrogen Phosphate of spontaneous parametric interaction tunable from 4400 to 16 000 °A," Phys. Rev. Lett. 18, 905 (1967). [CrossRef]
  5. S. A. Akhmanov, O. N. Chunaev, V. V. Fadeev, R. V. Khokhlov, D. N. Klyshko, A. I. Kovrigin, and A. S. Piskarskas, "Parametric generators of light," Proc. Symposium on Modern Optics, NY (1967).
  6. R. L. Byer and S. E. Harris, "Power and bandwidth of spontaneous parametric emission," Phys. Rev. 168, 1064-1068 (1968). [CrossRef]
  7. D. C. Burnham and D. L. Weinberg, "Observation of simultaneity in parametric production of optical photon pairs," Phys. Rev. Lett. 25, 84 (1970). [CrossRef]
  8. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044 (1987). [CrossRef] [PubMed]
  9. P. R. Tapster, J. G. Rarity, and J. S. Satchell, "Use of parametric down-conversion to generate sub-Poissonian light," Phys. Rev. A 37, 2963 (1988). [CrossRef] [PubMed]
  10. P. Baldi, M. Sundheimer, K. El Hadi, M. P. de Micheli, and D. B. Ostrowsky, "Comparison between differencefrequency generation and parametric fluorescence in quasi-phase-matched lithium niobate stripe waveguides," IEEE J. Sel. Top. Quantum. Electron 2, 385-395 (1996). [CrossRef]
  11. L. Carrion and J.-P. Girardeau-Montaut, "Development of a simple model for optical parametric generation," J. Opt. Soc. Am. B 17, 78-83 (2000). [CrossRef]
  12. D. Ljunggren and M. Tengner, "Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers," Phys. Rev. A 72, 062301 (2005). [CrossRef]
  13. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004). [CrossRef]
  14. T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Heralding single photons from pulsed parametric downconversion," Optics Commun. 246, 545-550 (2005). [CrossRef]
  15. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001). [CrossRef]
  16. F. N. C. Wong, J. H. Shapiro, and T. Kim, "Efficient generation of polarization-entangled photons in a nonlinear crystal," Laser Phys. 16, 1517-1524 (2006). [CrossRef]
  17. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, "High performance photon-pair source based on a fibercoupled periodically poled KTiOPO4 waveguide," Opt. Express 17, 12019-12030 (2009) [CrossRef] [PubMed]
  18. S. Lin and T. Suzuki, "Tunable picosecond mid-infrared pulses generated by optical parametric generation/ amplification in MgO:LiNbO3 crystals," Opt. Lett. 21, 579-581 (1996) [CrossRef] [PubMed]
  19. Y. Pu, J. Wu, M. Tsang, and D. Psaltis, "Optical parametric generation in periodically poled KTiOPO4 via extended phase matching," Appl. Phys. Lett. 91, 131120 (2007). [CrossRef]
  20. N. Mohan, O. Minaeva, G. N. Gol’tsman, M. B. Nasr, B. E. A. Saleh, A. Sergienko, and M. C. Teich, "Photoncounting optical coherence-domain reflectometry using superconducting single-photon detectors," Opt. Express 16, 18118 (2008). [CrossRef] [PubMed]
  21. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  22. B. I. Erkmen and J. H. Shapiro, "Phase-conjugate optical coherence tomography," Phys. Rev. A 74, 041601(R) (2006). [CrossRef]
  23. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, "Effective fibercoupling of entangled photons for quantum communication," Opt. Commun. 227, 343-348 (2003). [CrossRef]
  24. R. S. Bennink, Y. Liu, D. D. Earl, andW. P. Grice, "Spatial distinguishability of photons produced by spontaneous parametric down-conversion with a focused pump," Phys. Rev. A 74, 023802 (2006). [CrossRef]
  25. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007). [CrossRef] [PubMed]
  26. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968). [CrossRef]
  27. O. Kuzucu, F. N. C. Wong, D. E. Zelmon, S. M. Hegde, T. D. Roberts, and P. Battle, "Generation of 250 mW narrowband pulsed ultraviolet light by frequency quadrupling of an amplified erbium-doped fiber laser," Opt. Lett. 32, 1290-1292 (2007). [CrossRef] [PubMed]
  28. D. E. Zelmon, D. L. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997). [CrossRef]
  29. R. L. Byer, "Parametric oscillators and nonlinear materials," in Nonlinear Optics, pp. 47-160, P. G. Harper and B. S. Wherrett, eds. (Academic Press, New York, 1977).
  30. B. Lai, N. C. Wong, and L. K. Cheng, "Continuous-wave tunable light source at 1.6 ?m by difference-frequency mixing in CsTiOAsO4," Opt. Lett. 20, 1779-1781 (1995). [CrossRef] [PubMed]
  31. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited