OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17950–17962

Dispersion-modulation by high material loss in microstructured polymer optical fibers

Michael H. Frosz  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17950-17962 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (663 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) of a nonlinear waveguide is investigated theoretically. It is found specifically for degenerate four-wave mixing in a poly(methyl methacrylate) microstructured polymer optical fiber that the loss-induced dispersion significantly modifies the wavelengths for which there is phase-match. Depending on the pump wavelength, the waveguide dispersion, and the loss peaks, it is possible for the output spectrum to either be unaffected by the loss-induced dispersion modulation, or to show an increase in the efficiency of nonlinear spectral broadening, compared to the expected efficiency when ignoring the loss-induced dispersion modulation.

© 2009 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 13, 2009
Revised Manuscript: September 12, 2009
Manuscript Accepted: September 16, 2009
Published: September 22, 2009

Michael H. Frosz, "Dispersion-modulation by high material loss in microstructured polymer optical fibers," Opt. Express 17, 17950-17962 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, USA, 2007).
  2. P. D. Rasmussen, J. Laegsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Opt. Express 16(6), 4059–4068 (2008). [CrossRef] [PubMed]
  3. S.-J. Im, A. Husakou, and J. Herrmann, “Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers,” Opt. Express 17(15), 13050–13058 (2009). [CrossRef] [PubMed]
  4. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000). [CrossRef]
  5. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, C. M. de Sterke, and N. A. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001). [CrossRef] [PubMed]
  6. M. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2008).
  7. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., New York, 1991).
  8. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23(8), 1692–1699 (2006). [CrossRef]
  9. G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber-Based Slow-Light Technologies,” J. Lightwave Technol. 26(23), 3752–3762 (2008). [CrossRef]
  10. T. Kaino, “Absorption losses of low-loss plastic optical fibers,” Jpn. J. Appl. Phys. Part 1 - Regul,” Pap. Short Notes Rev. Pap. 24, 1661–1665 (1985).
  11. J. Zagari, A. Argyros, N. A. Issa, G. Barton, G. Henry, M. C. J. Large, L. Poladian, and M. A. van Eijkelenborg, “Small-core single-mode microstructured polymer optical fiber with large external diameter,” Opt. Lett. 29(8), 818–820 (2004). [CrossRef] [PubMed]
  12. D. Morichère, M. L. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electro-optic measurements,” in Nonlinear Optical Properties of Organic Materials IV, (SPIE, 1991), 214–225.
  13. F. Kajzar, “Third Harmonic Generation,” in Characterization techniques and tabulations for organic nonlinear optical materials, M. G. Kuzyk and C. W. Dirk, eds. (Marcel Dekker, Inc., 1998).
  14. M. H. Frosz, K. Nielsen, P. Hlubina, A. Stefani, and O. Bang, “Dispersion-engineered and highly nonlinear microstructured polymer optical fibres,” Proceedings of the SPIE - The International Society for Optical Engineering 7357, 735705 (735709 pp.) (2009).
  15. A. Sherman, (personal communication, 2009).
  16. A. Sherman, E. Benkler, and H. R. Telle, “Small third-order optical-nonlinearity detection free of laser parameters,” Opt. Lett. 34(1), 49–51 (2009). [CrossRef]
  17. Data kindly provided by Optical Fibre Technology Centre, University of Sydney, Australia.
  18. COMSOL, Multiphysics 3.4 (2007), http://www.comsol.com .
  19. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  20. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19(4), 753–764 (2002). [CrossRef]
  21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C + + : The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited