OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17963–17969

Changing the emission of polarized thermal radiation from metallic nanoheaters

Levente J. Klein, Snorri Ingvarsson, and Hendrik F. Hamann  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 17963-17969 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization of the thermal radiation emitted from individual nanoheaters is investigated for nanoheaters with widths ranging from 500 nm to 2000 nm. The polarization is oriented along the long axis of the nanoheater for widths below 600 nm and rotates by 90° and becomes perpendicular for widths above 900 nm. For certain width nanoheaters the orientation of the polarization of the thermal emission can be rotated from parallel to perpendicular by changing the temperature of the nanoheater. The change in the direction of the emitted thermal radiation is explained by thermally excited transverse plasmon modes.

© 2009 OSA

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(230.6080) Optical devices : Sources

ToC Category:
Optical Devices

Original Manuscript: August 17, 2009
Revised Manuscript: September 17, 2009
Manuscript Accepted: September 17, 2009
Published: September 22, 2009

Levente J. Klein, Snorri Ingvarsson, and Hendrik F. Hamann, "Changing the emission of polarized thermal radiation from metallic nanoheaters," Opt. Express 17, 17963-17969 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  2. M. Klevenz, F. Neubrech, R. Lovrincic, M. Jaochowski, and A. Pucci, “Infrared resonances of self- assembled Pb nanorods,” Appl. Phys. Lett. 92(13), 133116 (2008). [CrossRef]
  3. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  4. F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004). [CrossRef]
  5. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef] [PubMed]
  6. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007). [CrossRef]
  7. O. G. Kollyukh, A. I. Liptugaa, V. Morozhenkoa, V. I. Pipaa, and E. F. Vengera, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007). [CrossRef]
  8. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007). [CrossRef]
  9. L. J. Klein, H. F. Hamann, Y. Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008). [CrossRef]
  10. S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007). [CrossRef] [PubMed]
  11. Y.-Y. Au, H. S. Skulason, S. Ingvarsson, L. J. Klein, and H. F. Hamann, “Thermal radiation spectra of individual subwavelength microheaters,” Phys. Rev. B 78(8), 085402 (2008). [CrossRef]
  12. J. M. Bennet, “Polarization” in Handbook of Optics M.Bass, eds (McGraw-Hill, New-York 1995), Chap. 5.
  13. C. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  14. M. A. Ordal, R. J. Bell, R. W. Alexander Jr, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  15. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in thick semiconducting nanowires,” J. Appl. Phys. 100(2), 024314 (2006). [CrossRef]
  16. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B 72(11), 115308 (2005). [CrossRef]
  17. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  18. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008). [CrossRef] [PubMed]
  19. D. R. Ward, N. J. Halas, and D. Natelson, “Localized heating in nanoscale Pt constrictions measured using blackbody radiation emission,” Appl. Phys. Lett. 93(21), 213108 (2008). [CrossRef]
  20. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006). [CrossRef] [PubMed]
  21. S.-Y. Yim, H.-G. Ahn, K.-C. Je, M. Choi, C. W. Park, H. Ju, and S.-H. Park, “Observation of red-shifted strong surface plasmon scattering in single Cu nanowires,” Opt. Express 15(16), 10282–10287 (2007). [CrossRef] [PubMed]
  22. J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H. G. Silva-Pereyra, C. Torres-Torres, A. L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express 17(15), 12849–12868 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited