OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17970–17975

Axial birefringence induced focus splitting in lithium niobate

Guangyong Zhou, Alexander Jesacher, Martin Booth, Tony Wilson, Airán Ródenas, Daniel Jaque, and Min Gu  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17970-17975 (2009)
http://dx.doi.org/10.1364/OE.17.017970


View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the experimental observation of “focus splitting” when light is tightly focused into a uniaxial lithium niobate crystal along its optical axis. This effect consists in the focal spot being split into two major sub-peaks along the axial direction. For the microfabrication applications such as three-dimensional photonic crystal fabrication and waveguide writing, this effect is highly undesired since it can lead to the generation of multiple distinct voxels in the vicinity of the focus. The splitting is caused by different birefringence induced aberrations for the ordinary and extraordinary polarization eigenmodes. We present numerical simulations which support our observations and suggest methods to avoid this effect.

© 2009 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence

ToC Category:
Physical Optics

History
Original Manuscript: August 14, 2009
Revised Manuscript: September 17, 2009
Manuscript Accepted: September 18, 2009
Published: September 22, 2009

Citation
Guangyong Zhou, Alexander Jesacher, Martin Booth, Tony Wilson, Airán Ródenas, Daniel Jaque, and Min Gu, "Axial birefringence induced focus splitting in lithium niobate," Opt. Express 17, 17970-17975 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17970


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004) (a). [CrossRef]
  2. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007). [CrossRef]
  3. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007). [CrossRef]
  4. L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17(5), 3923–3928 (2009). [CrossRef] [PubMed]
  5. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33(16), 1804–1806 (2008). [CrossRef] [PubMed]
  6. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005). [CrossRef] [PubMed]
  7. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17(1), 87–91 (2009). [CrossRef] [PubMed]
  8. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89(24), 241110 (2006). [CrossRef]
  9. G. Zhou and M. Gu, “Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal,” Appl. Phys. Lett. 87(24), 241107 (2005). [CrossRef]
  10. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21, 1–5 (2009). [CrossRef]
  11. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “a_ and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006). [CrossRef]
  12. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006). [CrossRef] [PubMed]
  13. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive index mismatched media,” J. Microsc. 192(2), 90–98 (1998). [CrossRef]
  14. M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006). [CrossRef]
  15. P. Török, P. Varga, and G. Németh, “Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995). [CrossRef]
  16. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  17. S. Stallinga, “Light distribution close to focus in biaxially birefringent media,” J. Opt. Soc. Am. A 21(9), 1785–1798 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited