OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17976–17982

Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror

Meng Jiang, A. Ping Zhang, Yang-Chun Wang, Hwa-Yaw Tam, and Sailing He  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17976-17982 (2009)
http://dx.doi.org/10.1364/OE.17.017976


View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A long-period grating (LPG) based compact optical fiber sensor working in reflection mode is demonstrated. A technique to make a mirror on the cladding region of a fiber end-face to reflect only the cladding modes was realized by growing a polymeric microtip on the core region of the fiber end-face, by photopolymerization, followed by coating the fiber end-face with an aluminum film. Using the cladding-mode-selective fiber end-face mirror, the transmission spectrum of the LPG was “inverted” and reflected. Preliminary results of using the sensor to measure the refractive index of glycerol/water solutions were successfully demonstrated.

© 2009 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 27, 2009
Revised Manuscript: September 20, 2009
Manuscript Accepted: September 20, 2009
Published: September 22, 2009

Citation
Meng Jiang, A. Ping Zhang, Yang-Chun Wang, Hwa-Yaw Tam, and Sailing He, "Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective 
fiber end-face mirror," Opt. Express 17, 17976-17982 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17976


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Dakin and B. Culshaw, Optical fiber sensors (Artech House, Boston, 1988).
  2. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003). [CrossRef]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele,“Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  4. I. Bennion, and L. Zhang, “Fiber Bragg grating technologies and applications in sensors,” 2006 OSA/OFC, 2415–2417 (2006).
  5. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996). [CrossRef] [PubMed]
  6. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002). [CrossRef]
  7. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003). [CrossRef]
  8. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998). [CrossRef]
  9. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000). [CrossRef] [PubMed]
  10. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006). [CrossRef]
  11. J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, ““Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006). [CrossRef]
  12. Z. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi,Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009). [CrossRef]
  13. M. Dagenais, A. N. Chrysis, H. Yi, S. M. Lee, S. S. Saini, and W. E. Bentley, “Optical bio-sensors based on etched fiber Bragg gratings,” Proc. SPIE 5729, 214–224 (2005). [CrossRef]
  14. X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. L. Chu, ““Temperature-insensitive chemical sensor based on a fiber Bragg grating,” Sens. Actuators B Chem. 120(2), 754–757 (2007). [CrossRef]
  15. L. Y. Shao, A. P. Zhang, W. S. Liu, H. Y. Fu, and S. He, “Optical refractive-index sensor based on dual fiber-Bragg gratings interposed with a multimode-fiber taper,” IEEE Photon. Technol. Lett. 19(1), 30–32 (2007). [CrossRef]
  16. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001). [CrossRef]
  17. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002). [CrossRef]
  18. P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15(8), 1576–1580 (2004). [CrossRef]
  19. J. Yang, P. Sandhu, W. Liang, C. Q. Xu, and Y. Li, “Label-free fiber optic biosensors with enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1691–1696 (2007). [CrossRef]
  20. E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion,“Sol-Gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt. 11(1), 015501 (2009). [CrossRef]
  21. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005). [CrossRef]
  22. X. F. Chen, K. M. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005). [CrossRef] [PubMed]
  23. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005). [CrossRef]
  24. K. Shima, K. Himeno, T. Sakai, S. Okude, A. Wada, and R. Yamauchi, “Novel temperature-insensitivity long-period fiber grating using a boron-codoped-germanosilicate-core fiber,” OFC’97,” OSA Technical Digest Series 6, 347–348 (1997).
  25. M. Jiang, Z. G. Guan, and S. He, “Multiplexing scheme for self-interfering long-period fiber gratings using a low-coherence reflectometry,” IEEE Sens. J. 7(12), 1663–1667 (2007). [CrossRef]
  26. A. P. Zhang, X. W. Chen, J. H. Yan, Z. G. Guan, S. He, and H. Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain-flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17(12), 2559–2561 (2005). [CrossRef]
  27. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40(32), 5860–5871 (2001). [CrossRef]
  28. L. M. Xiao, W. Jin, M. S. Demokan, H. L. Ho, H. Y. Tam, J. Ju, and J. M. Yu, “Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers,” Opt. Lett. 31(12), 1791–1793 (2006). [CrossRef] [PubMed]
  29. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited