OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17983–17988

Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers

Haohua Tu and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17983-17988 (2009)
http://dx.doi.org/10.1364/OE.17.017983


View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cherenkov radiation from short photonic crystal fiber with a high air-fill fraction can selectively convert the 1020 nm fs pump pulses from a laser oscillator to the fundamental-mode signal pulses at a significantly shorter wavelength. Across the ultraviolet-visible spectral region, the typical fiber output is characterized by a single isolated Cherenkov band having a multimilliwatt-level average power, a Gaussian-shaped spectrum, and a 3-dB bandwidth of 15 nm. By selecting photonic crystal fibers with smaller cores, the central wavelength of the Cherenkov band can be easily extended to 347 nm in the ultraviolet, in sharp contrast to various supercontinuum or non-supercontinuum fiber sources that have difficulty extending their emission spectra below 400 nm. The supercontinuum generation often associated with fs pulse-pumped fibers is efficiently suppressed by detuning the zero-dispersion wavelength of the photonic crystal fiber far shorter than the pump wavelength, a condition termed as the short nonlinear-interaction condition.

© 2009 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 2, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: September 17, 2009
Published: September 22, 2009

Citation
Haohua Tu and Stephen A. Boppart, "Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers," Opt. Express 17, 17983-17988 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17983


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons Inc., 2003).
  2. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20(11), 2329–2337 (2003). [CrossRef]
  3. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12(19), 4366–4371 (2004). [CrossRef] [PubMed]
  4. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12(15), 3471–3480 (2004). [CrossRef] [PubMed]
  5. P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Lightwave Technol. 23(1), 13–18 (2005). [CrossRef]
  6. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30(23), 3132–3134 (2005). [CrossRef] [PubMed]
  7. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006). [CrossRef] [PubMed]
  8. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008). [CrossRef] [PubMed]
  9. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008). [CrossRef] [PubMed]
  10. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett. 34, 2015–2017 (2009). [CrossRef] [PubMed]
  11. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12(13), 2844–2850 (2004). [CrossRef] [PubMed]
  12. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007). [CrossRef] [PubMed]
  13. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Önfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D 37(23), 3296–3303 (2004). [CrossRef]
  14. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator,” Opt. Lett. 33(12), 1351–1353 (2008). [CrossRef] [PubMed]
  15. H. Tu, Z. Jiang, D. L. Marks, and S. A. Boppart, “Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber,” Appl. Phys. Lett. 94(10), 101109 (2009). [CrossRef] [PubMed]
  16. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B 23(6), 1221–1227 (2006). [CrossRef]
  17. K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett. 31(8), 1148–1150 (2006). [CrossRef] [PubMed]
  18. M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12(9), 1932–1937 (2004). [CrossRef] [PubMed]
  19. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]
  20. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002). [CrossRef] [PubMed]
  21. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004). [CrossRef] [PubMed]
  22. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006). [CrossRef] [PubMed]
  23. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10(20), 1083–1098 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited