OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18003–18013

Fabrication of optical filters based on polymer asymmetric Bragg couplers

Wei-Ching Chuang, An-Chen Lee, Ching-Kong Chao, and Chi-Ting Ho  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 18003-18013 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we successfully developed a process to fabricate dual-channel polymeric waveguide filters based on an asymmetric Bragg coupler (ABC) using holographic interference techniques, soft lithography, and micro molding. At the cross- and self-reflection Bragg wavelengths, the transmission dips of approximately –16.4 and –11.5dB relative to the 3dB background insertion loss and the 3dB transmission bandwidths of approximately 0.6 and 0.5nm were obtained from an ABC-based filter. The transmission spectrum overlaps when the effective index difference between two single waveguides is less than 0.002.

© 2009 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(220.4610) Optical design and fabrication : Optical fabrication
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 29, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: September 21, 2009
Published: September 23, 2009

Wei-Ching Chuang, An-Chen Lee, Ching-Kong Chao, and Chi-Ting Ho, "Fabrication of optical filters based on polymer asymmetric Bragg couplers," Opt. Express 17, 18003-18013 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric bragg coupler,” Opt. Commun. 157(1–6), 249–264 (1998). [CrossRef]
  2. D. Gauden, E. Goyat, C. Vaudry, P. Yvernault, and P. Pureur, “Tunable Mach-Zehnder-based add-drop multiplexer,” Electron. Lett. 40(21), 1374–1375 (2004). [CrossRef]
  3. M. Kulishov, V. Grubsky, J. Schwartz, X. Daxhelet, and D. V. Plant,“Tunable waveguide transmission gratings based on active gain control,” IEEE J. Quantum Electron. 40(12), 1715–1724 (2004). [CrossRef]
  4. M. Dainese, M. Swillo, L. Wosinski, and L. Thylen,“Directional coupler wavelength selective filter based on dispersive bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006). [CrossRef]
  5. F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/de-multiplexer using photoimprinted Bragg grating,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995). [CrossRef]
  6. H. C. Tsoi, W. H. Wong, and E. Y. B. Pun,“Polymeric long-period waveguide gratings,” IEEE Photon. Technol. Lett. 15(5), 721–723 (2003). [CrossRef]
  7. S. Ahn and S. Shin, “Grating-assisted co-directional coupler filter using electrooptic and passive polymer waveguides,” IEEE J. Sel. Top. Quantum Electron. 7(5), 819–825 (2001). [CrossRef]
  8. L. Dong, L. Reekie, and J. L. Cruz, “Long period grating formed in depressed cladding fibres,” Electron. Lett. 33(22), 1897–1898 (1997). [CrossRef]
  9. T. M. Butler, E. Igata, S. J. Sheard, and N. Blackie, “Integrated optical Bragg-grating-based chemical sensor on a curved input edge waveguide structure,” Opt. Lett. 24(8), 525–527 (1999). [CrossRef]
  10. Y. O. Noh, H. J. Lee, J. J. Ju, M. S. Kim, S. H. Oh, and M. C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16, 18194–18201 (2008), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-16–22–18194.
  11. G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim,“Over 26-nm Wavelength Tunable External Cavity Laser Based on Polymer Waveguide Platforms for WDM Access Networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006). [CrossRef]
  12. J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. J., and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005). [CrossRef]
  13. M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998). [CrossRef]
  14. W. C. Chuang, C. T. Ho, and W. C. Wang, “Fabrication of a high resolution periodical structure using a replication process” Opt. Express 13, 6685–6692 (2005), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-13–18–6685.
  15. W. C. Chuang, C. K. Chao, and C. T. Ho, “Fabrication of a high resolution periodical structure on polymer waveguide using a replication process” Opt. Express 15, 8649–8659 (2007), http://www.opticsexpress.org/abstract.cfm?URI = OPEX-15–14–8648.
  16. W. C. Chuang, C. T. Ho, and W. C. Chang, “Fabrication of polymer waveguides by a replication method,” Appl. Opt. 45(32), 8304–8307 (2006). [CrossRef] [PubMed]
  17. J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997). [CrossRef]
  18. P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998). [CrossRef]
  19. M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
  20. M. Greenberg and M. Orenstein, “Unidirectional complex grating assisted couplers,” Opt. Express 12(17), 4013–4018 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4013 . [CrossRef] [PubMed]
  21. A. Yariv, Introduction to Optical Electronics, 3rd edition, (H. Rinehart & Winston, New York, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited