OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18026–18037

Simple correction method of distorted elemental images using surface markers on lenslet array for computational integral imaging reconstruction

Joon-Jae Lee, Dong-Hak Shin, and Byung-Gook Lee  »View Author Affiliations

Optics Express, Vol. 17, Issue 20, pp. 18026-18037 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (677 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a simple correction method of distorted elemental images for computational integral imaging reconstruction (CIIR) method by using surface markers on lenslet array. The position information of surface markers is extracted from distorted elemental images with geometric misalignments such as skew, rotation and so on. Then the elemental images can be corrected simply when applying linear transformation calculated from the extracted positions. Therefore, the proposed method can simply correct geometric misalignments such as skew and rotation. The corrected elemental images can provide the precise reconstruction of 3D plane images in CIIR. To show the usefulness of the proposed method, the preliminary experiments are carried out and the experimental results are presented. To the best of our knowledge, this is the first report to deal with compensating for the distorted elemental images recorded by using computational integral imaging.

© 2009 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition

ToC Category:
Image Processing

Original Manuscript: July 2, 2009
Revised Manuscript: September 8, 2009
Manuscript Accepted: September 8, 2009
Published: September 23, 2009

Joon-Jae Lee, Dong-Hak Shin, and Byung-Gook Lee, "Simple correction method of distorted elemental images using surface markers on lenslet array for computational integral imaging reconstruction," Opt. Express 17, 18026-18037 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, Bellingham, WA, 2001).
  2. T. Okoshi, “Three-dimensional display,” Proc. IEEE 68(5), 548–564 (1980). [CrossRef]
  3. A. R. L. Travis, “The display of Three-dimensional video images,” Proc. IEEE 85(11), 1817–1832 (1997). [CrossRef]
  4. D. H. McMahon and H. J. Caulfield, “A technique for producing wide-angle holographic displays,” Appl. Opt. 9(1), 91–96 (1970). [CrossRef] [PubMed]
  5. G. Lippmann, “La photographie integrale,” Comptes-Rendus Academie des Sciences 146, 446–451 (1908).
  6. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997). [CrossRef] [PubMed]
  7. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002). [CrossRef]
  8. S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42(20), 4186–4195 (2003). [CrossRef] [PubMed]
  9. D.-H. Shin, S.-H. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun. 275(2), 330–334 (2007). [CrossRef]
  10. R. Martinez-Cuenca, A. Pons, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Optically-corrected elemental images for undistorted Integral image display,” Opt. Express 14(21), 9657–9663 (2006). [CrossRef] [PubMed]
  11. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004). [CrossRef] [PubMed]
  12. S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004). [CrossRef] [PubMed]
  13. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72–79 (2007). [CrossRef]
  14. D.-H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express 15(19), 12039–12049 (2007). [CrossRef] [PubMed]
  15. D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D object using a depth conversion technique,” J. Opt. Soc. Korea 12(3), 131–135 (2008). [CrossRef]
  16. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007). [CrossRef] [PubMed]
  17. J. Hahn, Y. Kim, E. H. Kim, and B. Lee, “Undistorted pickup method of both virtual and real objects for integral imaging,” Opt. Express 16(18), 13969–13978 (2008). [CrossRef] [PubMed]
  18. M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. 33(7), 684–686 (2008). [CrossRef] [PubMed]
  19. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited