OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 18076–18082

Large mode area silicon microstructured fiber with robust dual mode guidance

N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 18076-18082 (2009)
http://dx.doi.org/10.1364/OE.17.018076


View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A silicon microstructured fiber has been designed and fabricated using a pure silica photonic bandgap guiding fiber as a 3D template for materials deposition. The resulting silicon fiber has a micron sized core but with a small core-cladding index contrast so that it only supports two guided modes. It will be shown that by using the microstructured template this fiber exhibits a number of similar guiding properties to the more traditional index guiding air-silica structures. The large mode areas and low optical losses measured for the silicon microstructured fiber demonstrate its potential to be integrated with existing fiber infrastructures.

© 2009 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(160.6000) Materials : Semiconductor materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 28, 2009
Revised Manuscript: August 28, 2009
Manuscript Accepted: September 15, 2009
Published: September 23, 2009

Citation
N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "Large mode area silicon microstructured fiber with robust dual mode guidance," Opt. Express 17, 18076-18082 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-18076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006). [CrossRef]
  2. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optical waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004). [CrossRef] [PubMed]
  3. M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004). [CrossRef]
  4. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006). [CrossRef] [PubMed]
  5. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  6. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a Mid-infrared silicon Raman amplifier," Opt. Express 15, 14355-14362 (2007). [CrossRef] [PubMed]
  7. V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007). [CrossRef] [PubMed]
  8. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007). [CrossRef] [PubMed]
  9. T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003). [CrossRef]
  10. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Express 16, 4337-4346 (2008). [CrossRef] [PubMed]
  11. C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989). [CrossRef]
  12. L. Lagonigro, N. V. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "Wavelengthdependent loss measurements in polysilicon modified optical fibres," CLEO/Europe-EQEC CE3 (2009).
  13. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  14. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000). [CrossRef]
  15. C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007). [CrossRef]
  16. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited